Many strongly correlated electronic materials have a domain structure that greatly influences the bulk properties and obscures the fundamental properties of the homogeneous material. Nanoscale samples, on the other hand, can be smaller than the characteristic domain size, thus making it possible to explore these fundamental properties in detail. Here, we report new aspects of the metal-insulator transition, studied in single-domain vanadium dioxide nanobeams. We have observed supercooling of the metallic phase by 50 degrees C, an activation energy in the insulating phase that is consistent with the optical gap, and a connection between the metal-insulator transition and the equilibrium carrier density in the insulating phase. Our devices also provide a nanomechanical method for determining the transition temperature, enable measurements on individual metal-insulator interphase walls to be made, and allow general investigations of phase transitions in quasi-one-dimensional geometries.
Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on the demonstration of movable and vibrating MoS2 nanodevices, where MoS2 diaphragms as thin as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ~ 60 MHz in the very high frequency (VHF) band, and frequency-quality (Q) factor products up to f0 × Q ~ 2 × 10(10)Hz, all at room temperature. The experimental results from many devices with a wide range of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2 nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals.
Phase transitions of adsorbed atoms and molecules on two-dimensional substrates are well explored, but similar transitions in the one-dimensional limit have been more difficult to study experimentally. Suspended carbon nanotubes can act as nanoscale resonators with remarkable electromechanical properties and the ability to detect adsorption at the level of single atoms. We used single-walled carbon nanotube resonators to study the phase behavior of adsorbed argon and krypton atoms as well as their coupling to the substrate electrons. By monitoring the resonance frequency in the presence of gases, we observed the formation of monolayers on the cylindrical surface, phase transitions within them, and simultaneous modification of the electrical conductance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.