This paper presents an ultra-small physical unclonable function (PUF) chip structure to protect data in compact IoT sensor devices. The proposed PUF has far fewer transistors and a reduced active area compared to the conventional strong PUF with multiple challenge response pairs (CRPs). According to the manufacturing process variations, the conventional SRAM-based PUF uses a switching transistor and a main transistor to implement multiple CRPs, whereas the proposed structure adds the function of a switching transistor to a single main transistor, controlling the body voltage to switch the transistor. For a PUF with a 32-bit challenge, the number of transistors is significantly reduced by 40%; the active area of the conventional structure is 57.78µm 2 while the area of the proposed structure is 36.4µm 2 . Overall, an active area reduction of 38% is realized with the same number of CRPs. Here, we implemented an SRAMbased PUF system with a 32-bit challenge, a 1024-bit response, and 160 million CRPs. PUF core cell shows energy efficiency of 0.09 pJ/bit. The inter-Hamming distance is 48.89%, while the intra-Hamming distance is 1.2% after data post-processing, i.e., discarding unstable bits. A prototype chip is implemented in the 65nm CMOS process with a supply voltage of 1.2V. Compared to the prior arts, the proposed prototype is shown effective silicon area reduction while maintaining remarkable energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.