This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT A total of 23 elite rice cultivars from eight countries were evaluated for cold tolerance using two screening methods at Chuncheon Substation, National Institute of Crop Science (NICS), Republic of Korea. The rice cultivars Jinbu, Mustaqillik, and Avangard showed cold tolerance and high spikelet fertility (63-79%) in cold-water irrigation screening. Under greenhouse screening, five cultivars (Giza 177, Avangard, Mustaqillik, Jinbu, and Jungan) showed high cold tolerance and high spikelet fertility (71-81%). Simple sequence repeat (SSR) marker analysis of 21 genotypes revealed two major clusters, the japonica and indica groups, with a genetic similarity of 0.69. Out of 21 rice cultivars, only four (Giza 178 from Egypt, Attey and Zakha from Bhutan, and Millin from Australia) fell under the indica cluster. The cold-tolerant varieties Jinbu, Mustaqillik, and Avangard were clustered with the japonica group, which had genetic similarity of 0.83. These varieties are considered as potential germplasm that will help diversify the japonica gene pool for cold-tolerant rice breeding. A one-way linear analysis of variance identified a significant relationship between individual alleles and traits. Three SSR markers were significantly associated with spikelet fertility under cold-water irrigation on chromosomes 1, 2, and 7. Five SSR markers were associated with spikelet fertility under a cool-environment greenhouse on chromosomes 8, 9, 10, and 12. The SSR markers associated with cold tolerance may also be useful as selection markers in indica/japonica cross combinations to improve cold tolerance.
One of the difficult problems in hybrid rice seed production is the low outcrossing frequency and requirement for much labor to produce hybrid seeds. In order to simplify the process of hybrid rice seed production, herbicide-resistant photoperiod sensitive genic male sterile (HRPGMS) rice was utilized in this study. The herbicide resistance gene bar was transferred into the photoperiod sensitive genic male sterile (PGMS) rice 920S by Agrobacterium-mediated transformation and the HRPGMS line YA3530ms with good agronomic characteristics was bred by applying conventional pedigree breeding technique. The seeds of HRPGMS and pollen parent were mixed with the ratio of 4:1 in weight, and were sowed in seedling box. The mixed seedlings of HRPGMS and pollen parent grown for 30 days were transplanted by the small transplanting machine in the field. The herbicide glufosinate ammonium was sprayed at 7 days after flowering to kill all the plants of pollen parent, whereas hybrid seeds were harvested from the survived HRPGMS parent at maturity. The outcrossing frequency of HRPGMS line from two combinations in 2002 and from five combinations in 2004 were compared with a control cultivated by the conventional 2-line system. As the result, the mean outcrossing frequency in HRPGMS of the treatments were 10.6-24.5% compared with 5.5% in PGMS of the control in 2002, and that were 24.7-32.0% compared with 7.5% in the control in 2004. Consequently, using HRPGMS in two-line system was proved to be a new method that would simplify the process of hybrid rice seed production and to increase outcrossing frequency without any artificial supplementary pollination processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.