MicroRNAs have been shown to effectively regulate gene expression at the translational level. Recently, we identified novel microRNAs that were upregulated in a mouse model of spinal cord injury. Among those, we have focused on microRNA 486, which directly represses NeuroD6 expression through a conserved sequence in its untranslated region. We correlated the overexpression of microRNA 486 in motor neurons with a poor outcome due to progressive neurodegeneration and a pathophysiology that is mediated by reactive oxygen species. The expression of microRNA 486 was induced by reactive oxygen species that were produced by inflammatory factors, and reactive oxygen species were accumulated in response to the knockdown of NeuroD6, which enhances the downregulation of glutathione peroxidase 3 and thioredoxin-like 1 after traumatic spinal cord injury. NeuroD6 directly bound to regulatory regions of thioredoxin-like 1 and glutathione peroxidase 3 in motor neurons and activated their expression, which promoted reactive oxygen species scavenging. Moreover, knocking down microRNA 486 induced the expression of NeuroD6, which effectively ameliorated the spinal cord injury and allowed the mice to recover motor function. The infusion of exogenic NeuroD6 in spinal cord injury lesions effectively blocked apoptosis by reactivating thioredoxin-like 1 and glutathione peroxidase 3, which was accompanied by a recovery of motor function. Collectively, these findings have identified a novel microRNA in spinal cord injury lesions called microRNA 486, demonstrating a new role for NeuroD6 in neuroprotection, and suggest a potential therapeutic target for spinal cord injuries.
Neuropathic pain is a well-known type of chronic pain caused by damage to the nervous system. Until recently, many researchers have primarily focused on identifying cellular or chemical sources of neuropathic pain or have approached neuropathic pain via the basis of biological study. We investigated whether both mmu-mir-23b (miR23b) and NADPH oxidase 4 (NOX4) antibody infusion can alleviate neuropathic pain by compensating for abnormally downregulated miR23b via reducing the expression of its target gene, NOX4, a reactive oxygen species (ROS) family member overexpressed in neuropathic pain. Ectopic miR23b expression effectively downregulated NOX4 and finally normalized glutamic acid decarboxylase 65/67 expression. Moreover, animals with neuropathic pain showed significantly improved paw withdrawal thresholds (PWTs) following miR23b infusion. Normalizing miR23b expression in tissue lesions, caused by neuropathic pain induction, reduced inflammatory mediators and increased several ROS scavengers. Moreover, γ-aminobutyric acid (GABA)ergic neurons coexpressed suboptimal levels of miR23b and elevated NOX4/ROS after pain induction at the cellular level. MiR23b finally protects GABAergic neurons against ROS/p38/c-Jun N-terminal kinase (JNK)-mediated apoptotic death. By evaluating the functional behavior of mice receiving pain/miR23b, normal/anti-miR23b, anti-miR23b/si-NOX4, pain/NOX4 antibody, pain/ascorbic acid, and pain/ascorbic acid/NOX4 antibody, the positive role of miR23b and the negative role of NOX4 in neuropathic pain were confirmed. Based on this study, we conclude that miR23b has a crucial role in the amelioration of neuropathic pain in injured spinal cord by inactivating its target gene, NOX4, and protection of GABAergic neurons from cell death. We finally suggest that infusion of miR23b and NOX4 antibody may provide attractive diagnostic and therapeutic resources for effective pain modulation in neuropathic pain.
Background Concomitant administration of allogeneic umbilical cord blood (UCB) infusion and erythropoietin (EPO) showed therapeutic efficacy in children with cerebral palsy (CP). However, no clinical studies have investigated the effects of UCB and EPO combination therapy using a 2 × 2 four-arm factorial blinded design with four arms. This randomized placebo-controlled trial aimed to identify the synergistic and individual efficacies of UCB cell and EPO for the treatment of CP. Methods Children diagnosed with CP were randomly segregated into four groups: (A) UCB+EPO, (B) UCB+placebo EPO, (C) placebo UCB+EPO, and (D) placebo UCB+placebo EPO. Based on the UCB unit selection criteria of matching for ≥ 4/6 of human leukocyte antigen (HLA)-A, -B, and DRB1 and total nucleated cell (TNC) number of ≥ 3 × 107/kg, allogeneic UCB was intravenously infused and 500 IU/kg human recombinant EPO was administered six times. Functional measurements, brain imaging studies, and electroencephalography were performed from baseline until 12 months post-treatment. Furthermore, adverse events were closely monitored. Results Eighty-eight of 92 children enrolled (3.05 ± 1.22 years) completed the study. Change in gross motor performance measure (GMPM) was greater in group A than in group D at 1 month (△2.30 vs. △0.71, P = 0.025) and 12 months (△6.85 vs. △2.34, P = 0.018) post-treatment. GMPM change ratios were calculated to adjust motor function at the baseline. Group A showed a larger improvement in the GMPM change ratio at 1 month and 12 months post-treatment than group D. At 12 months post-treatment, the GMPM change ratios were in the order of groups A, B, C, and D. These results indicate synergistic effect of UCB and EPO combination better than each single therapy. In diffusion tensor imaging, the change ratio of fractional anisotropy at spinothalamic radiation was higher in group A than group D in subgroup of age ≥ 3 years. Additionally, higher TNC and more HLA-matched UCB units led to better gross motor outcomes in group A. Adverse events remained unchanged upon UCB or EPO administration. Conclusions These results indicate that the efficacy of allogeneic UCB cell could be potentiated by EPO for neurological recovery in children with CP without harmful effects. Trial registration ClinicalTrials.gov, NCT01991145, registered 25 November 2013.
Using the gyrokinetic formalism, a conductivity tensor operator is constructed for low fmquency perturbations. This operator includes the cold Alfvdn waves as well as kinetic Alfvdn waves. This operator should be appropriate for studies of toroidiciv-induced Alfvdn waves as well as antenna coupling of global Alfvin waves. In pmicular, terms normally missing in the usual magnetohydrodynamic description, as well as terms that are usunlly discarded in descriptions of Alfvdn waye heating, are reWined in this formalism and are identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.