Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.
Recent developments in the fields of smartphones and wireless communication technologies such as beacons, Wi-Fi, and ultrawideband have made it possible to realize indoor positioning system (IPS) with a few meters of accuracy. In this paper, an improvement over traditional fingerprinting localization is proposed by combining it with weighted centroid localization (WCL). The proposed localization method reduces the total number of fingerprint reference points over the localization space, thus minimizing both the time required for reading radio frequency signals and the number of reference points needed during the fingerprinting learning process, which eventually makes the process less time-consuming. The proposed positioning has two major steps of operation. In the first step, we have realized fingerprinting that utilizes lightly populated reference points (RPs) and WCL individually. Using the location estimated at the first step, WCL is run again for the final location estimation. The proposed localization technique reduces the number of required fingerprint RPs by more than 40% compared to normal fingerprinting localization method with a similar localization estimation error.
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.
In recent times, social and commercial interests in location-based services (LBS) are significantly increasing due to the rise in smart devices and technologies. The global navigation satellite systems (GNSS) have long been employed for LBS to navigate and determine accurate and reliable location information in outdoor environments. However, the GNSS signals are too weak to penetrate buildings and unable to provide reliable indoor LBS. Hence, GNSS’s incompetence in the indoor environment invites extensive research and development of an indoor positioning system (IPS). Various technologies and techniques have been studied for IPS development. This paper provides an overview of the available smartphone-based indoor localization solutions that rely on radio frequency technologies. As fingerprinting localization is mostly accepted for IPS development owing to its good localization accuracy, we discuss fingerprinting localization in detail. In particular, our analysis is more focused on practical IPS that are realized using a smartphone and Wi-Fi/Bluetooth Low Energy (BLE) as a signal source. Furthermore, we elaborate on the challenges of practical IPS, the available solutions and comprehensive performance comparison, and present some future trends in IPS development.
Nowadays, research and development of various indoor positioning systems (IPS) have been increasing owing to flourishing social and commercial interest in location-based services (LBSs). Among LBS technologies, we used the Bluetooth low energy beacon in our system, which consumes less energy and is embedded in many current smartphones and tablets. In particular, the fingerprinting method has become a prime choice in the design of IPS owing to its good location estimation and the fact that a line-of-sight from access points is not required. We propose an improved two-step fingerprinting localization using multiple fingerprint features to enhance the localization accuracy. The proposed system uses a propagation model to convert RSS of beacons to distance and estimate the weighted centroid (WC) of nearby beacons. The estimated WCs along with signal strength and rank of the nearby beacons are stored in the server database for localization instead of RSS from all the deployed beacons. First, the proposed system makes use of diverse fingerprinting features to increase localization accuracy that also reduces both the physical size of the database and the amount of data communication with the server in the execution phase; second, affinity propagation clustering minimizes the searching space of RPs and reduces the computational cost; third, exponential averaging is introduced to smooth the noisy RSS. The experimental results obtained by real field deployment show that the proposed method significantly improves the performance of the positioning system in both the positioning accuracy and radio-map database size. INDEX TERMS Affinity propagation clustering, BLE, Exponential averaging, RSS, Weighted centroid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.