Separation of acetylene from carbon dioxide and ethylene is challenging in view of their similar sizes and physical properties. Metal-organic frameworks (MOFs) in general are strong candidates for these separations owing to the presence of functional pore surfaces that can selectively capture a specific target molecule. Here, we report a novel 3D microporous cationic framework named JCM-1. This structure possesses imidazolium functional groups on the pore surfaces and pyrazolate as a metal binding group, which is well known to form strong metal-to-ligand bonds. The selective sorption of acetylene over carbon dioxide and ethylene in JCM-1 was successfully demonstrated by equilibrium gas adsorption analysis as well as dynamic breakthrough measurement. Furthermore, its excellent hydrolytic stability makes the separation processes highly recyclable without a substantial loss in acetylene uptake capacity.
Threshold voltage dependence on channel length in amorphous-indium-gallium-zinc-oxide thin-film transistors Appl. Phys. Lett. 102, 083508 (2013); 10.1063/1.4793996Low-temperature processed Schottky-gated field-effect transistors based on amorphous gallium-indium-zincoxide thin films Appl. Phys. Lett. 97, 243506 (2010); 10.1063/1.3525932High mobility amorphous zinc oxynitride semiconductor material for thin film transistors Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application J.
Clostridium botulinum type C 16S progenitor toxin consists of a neurotoxin (NTX), a non-toxic non-HA (NTNH), and a haemagglutinin (HA). The HA acts as an adhesin, allowing the 16S toxin to bind to intestinal epithelial cells and erythrocytes. In type C, these bindings are dependent on sialic acid. The HA consists of four distinct subcomponents designated HA1, HA2, HA3a and HA3b. To identify the binding subcomponent(s) of HA of type C 16S toxin, all of the HA-subcomponents and some of their precursor forms were produced as recombinant proteins fused to glutathione S-transferase (GST). These proteins were evaluated for their capacity to adhere to intestinal epithelial cells of guinea pig and human erythrocytes. GST-HA1, GST-HA3b and GST-HA3 (a precursor form of HA3a and HA3b) bound intestinal epithelial cells and erythrocytes, whereas GST alone, GST-HA2 and GST-HA3a did not. GST-HA3b and GST-HA3 showed neuraminidase-sensitive binding to the intestinal epithelial cells and erythrocytes, whereas GST-HA1 showed neuraminidase-insensitive binding. TLC binding assay revealed that GST-HA3b and GST-HA3 recognized sialosylparagloboside (SPG) and GM3 in the ganglioside fraction of the erythrocytes, like native type C 16S toxin [Inoue, K. et al. (1999). Microbiology
145, 2533–2542]. On the other hand, GST-HA1 recognized paragloboside (PG; an asialo- derivative of SPG) in addition to SPG and GM3. Deletion mutant analyses of GST-HA3b showed that the C-terminal region of HA3b is important for its binding activity. Based on these data, it is concluded that the HA component contains two distinct carbohydrate-binding subcomponents, HA1 and HA3b, which recognize carbohydrates in different specificities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.