High-occupancy vehicle (HOV) lanes or congestion toll discount policies are in place to encourage multipassenger vehicles. However, vehicle occupancy detection, essential for implementing such policies, is based on a labor-intensive manual method. To solve this problem, several studies and some companies have tried to develop an automated detection system. Due to the difficulties of the image treatment process, those systems had limitations. This study overcomes these limits and proposes an overall framework for an algorithm that effectively detects occupants in vehicles using photographic data. Particularly, we apply a new data labeling method that enables highly accurate occupant detection even with a small amount of data. The new labeling method directly labels the number of occupants instead of performing face or human labeling. The human labeling, used in existing research, and occupant labeling, this study suggested, are compared to verify the contribution of this labeling method. As a result, the presented model’s detection accuracy is 99% for the binary case (2 or 3 occupants or not) and 91% for the counting case (the exact number of occupants), which is higher than the previously studied models’ accuracy. Basically, this system is developed for the two-sided camera, left and right, but only a single side, right, can detect the occupancy. The single side image accuracy is 99% for the binary case and 87% for the counting case. These rates of detection are also better than existing labeling.
In response to extreme traffic congestion in metropolitan areas that causes unnecessarily long travel times, high fuel consumption, and excessive greenhouse gas emissions, transportation agencies have implemented various strategies to mitigate traffic congestion. Managed lanes—one of the measures applied worldwide—provide benefits to road users and operating agencies by integrating advanced technologies such as electronic and dynamic tolling systems. However, those agencies already implementing or considering implementing the managed lane strategy are seeking a solution to effectively and properly charge toll rates based on vehicle occupancy and penalize violating vehicles. Vehicle passenger detection systems (VPDSs) have been developed and evaluated worldwide, but limitations still inhibit their full implementation. This study confirms that the performance of the deep learning algorithm, a core VPDS technology, declines under certain adverse weather conditions because of lack of training data sets. The performance of the “you only look once” (YOLOv3) model trained with a normal weather data set decreased by as much as 8.5% when it was tested for adverse weather conditions. In this study, augmented reality (AR) models are developed to enhance the accuracy of vehicle passenger detection (VPDA) by the VPDS by training the algorithm with AR images representing virtual adverse weather conditions. Models trained with AR image sets of various weather categories (fog, rain, and snow) attained VPDA enhanced by up to 7.9%. The final model significantly improves VPDA under adverse weather conditions. The proposed models could be considered for implementation with road weather information systems under adverse weather conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.