a b s t r a c tThis paper discusses the procedure of a blockage effect correction method involving small-scale wind turbine rotor experimental data. To simulate the aerodynamic performance of full-scale rotors in the field, however, measured data from scaled model experiments need to be analyzed appropriately. One of the most important elements of such an analysis is a procedure to remove the blockage effect of the wind tunnel wall from the measured power data. In this paper, a correction algorithm proposed as part of Glauert's blockage effect correction method is used to process the data from a wind turbine rotor tested with three different wind tunnel sizes. Also, this study considered the modified blockage effect correction method, which has been used to process the rotor thrust data in closed-circuit wind tunnels and open-circuit wind tunnels. A small-scale rotor was tested under the same operating conditions, i.e., the same advance ratio, rotating speed, rotor torque and speed of the wind tunnel. The small-scale wind turbine rotor has a diameter of 1.408 m and a rotating speed according to the tip speed ratio. In each case, the effect of the blockage ratio and aerodynamic characteristics are determined using wind tunnel test results and with a simple analytical correction method. The results of the modified correction method show that the aerodynamic performance levels during a wind tunnel test are cleared by the blockage effect.
This chapter describes a wind tunnel experiment that was undertaken to investigate the changes in the aerodynamic performance of a wind turbine due to the inclusion of a 2-Dimension (2D) airfoil with a serrated trailing edge designed to reduce the noise caused by a wind turbine rotor blade. The restrictive condition for the serrated trailing edge equipped with the use of a 2D airfoil was examined through the use of a wind tunnel experiment after studying existing restrictive condition and analyzing prior research on serrated trailing edges. The study was conducted according to Howe's theory, which is a cornerstone of the study of noise reduction effects produced by a serrated trailing edge. For the serrated trailing edge equipped on a 2D airfoil, the wake distribution and the relation to noise were analyzed in order to determine the restrictive condition in accordance with Howe's theory. The results indicated that an empirical formula or a theoretical approach should consider changes in the boundary layer thickness of a 2D airfoil, so an empirical noise prediction formula is suggested for the serrated trailing edge. Also, a comparison and an analysis of the prediction and the experimental results for the noise produced by the NACA0012 or the baseline airfoil equipped with a serrated trailing edge suggested a novel formula for a 2D airfoil. Finally, the 2D airfoil noise data are compared with wind tunnel test data by using an empirical formula estimation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.