a b s t r a c tThis paper discusses the procedure of a blockage effect correction method involving small-scale wind turbine rotor experimental data. To simulate the aerodynamic performance of full-scale rotors in the field, however, measured data from scaled model experiments need to be analyzed appropriately. One of the most important elements of such an analysis is a procedure to remove the blockage effect of the wind tunnel wall from the measured power data. In this paper, a correction algorithm proposed as part of Glauert's blockage effect correction method is used to process the data from a wind turbine rotor tested with three different wind tunnel sizes. Also, this study considered the modified blockage effect correction method, which has been used to process the rotor thrust data in closed-circuit wind tunnels and open-circuit wind tunnels. A small-scale rotor was tested under the same operating conditions, i.e., the same advance ratio, rotating speed, rotor torque and speed of the wind tunnel. The small-scale wind turbine rotor has a diameter of 1.408 m and a rotating speed according to the tip speed ratio. In each case, the effect of the blockage ratio and aerodynamic characteristics are determined using wind tunnel test results and with a simple analytical correction method. The results of the modified correction method show that the aerodynamic performance levels during a wind tunnel test are cleared by the blockage effect.
This paper describes a research result of a external shape optimization study to maximize the range of the guided missile with canards and tailfins in atmospheric flight. For this purpose, the external shape optimization program which can enhance the range of a missile was developed, incorporated with the trajectory analysis and the optimization technique. In the trajectory analysis part, Missile DATCOM which utilizes the semi-empirical method was directly connected to the trajectory code to supply the aerodynamic coefficients efficiently at every time step. In the gliding flight trajectory after apogee, a maximum CL/CD trim condition calculation module was attached under the assumption of the missile continuously flying at maximum CL/CD condition. In the optimization part, a Response Surface Method(RSM) was adopted to reduce the computing time.
As a preliminary design study to achieve target aerodynamic performance, this work was conducted on an original nozzle with 9 flutes in order to design a fluted nozzle with 12 flutes. The thrust and rolling moment of the nozzle with 12 flutes were analyzed using a CFD code according to the depth and rotation angle of the flutes. Based on this, a fluted nozzle with 12 flutes was optimized to yield the same thrust as that of the original nozzle with 9 flutes. The response surface method was applied for shape optimization of the fluted nozzle and design variables were selected to determine the depth angle and rotation angle of the flutes. An optimized shape that led to a thrust as strong as that of the original nozzle was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.