Biological bases for sexual differences in the brain exist in a wide range of vertebrate species, including chickens. Recently, the dogma of hormonal dependence for the sexual differentiation of the brain has been challenged. We examined whether sexually dimorphic gene expression in the brain precedes gonadal differentiation. Using the Affymetrix GeneChip Chicken Genome Array, we identified 42 female- and 167 male-enhanced genes that were differentially expressed in sex-specific brains from stage 29 chicken embryos. To confirm the efficacy of the microarray, and to investigate the stage-specific expression patterns of the identified genes, we used quantitative real-time PCR analysis. Our real-time PCR results for the differentially expressed genes agreed well with our microarray results. Thus, we postulate that these genes have potential roles in the sexual differentiation of neural function and development in chickens.
AbstractsAlzheimer’s disease (AD) is a neurodegenerative disorder and is represented by complicated biological mechanisms and complexity of brain tissue. Our understanding of the complicated molecular architecture that contributes to AD progression benefits from performing comprehensive and systemic investigations with multi-layered molecular and biological data from different brain regions. Since recently different independent studies generated various omics data in different brain regions of AD patients, multi-omics data integration can be a useful resource for better comprehensive understanding of AD. Here we present a web platform, ADAS-viewer, that provides researchers with the ability to comprehensively investigate and visualize multi-omics data from multiple brain regions of AD patients. ADAS-viewer offers means to identify functional changes in transcript and exon expression (i.e., alternative splicing) along with associated genetic or epigenetic regulatory effects. Specifically, it integrates genomic, transcriptomic, methylation, and miRNA data collected from seven different brain regions (cerebellum, temporal cortex, dorsolateral prefrontal cortex, frontal pole, inferior frontal gyrus, parahippocampal gyrus, and superior temporal gyrus) across three independent cohort datasets. ADAS-viewer is particularly useful as a web-based application for analyzing and visualizing multi-omics data across multiple brain regions at both transcript and exon level, allowing the identification of candidate biomarkers of Alzheimer’s disease.
Background Serum alpha-fetoprotein (AFP) is the approved serum marker for hepatocellular carcinoma (HCC) screening. However, not all HCC patients show high (≥ 20 ng/mL) serum AFP, and the molecular mechanisms of HCCs with normal (< 20 ng/mL) serum AFP remain to be elucidated. Therefore, we aimed to identify biological features of HCCs with normal serum AFP by investigating differential alternative splicing (AS) between HCCs with normal and high serum AFP. Methods We performed a genome-wide survey of AS events in 249 HCCs with normal (n = 131) and high (n = 118) serum AFP levels using RNA-sequencing data obtained from The Cancer Genome Atlas. Results In group comparisons of RNA-seq profiles from HCCs with normal and high serum AFP levels, 161 differential AS events (125 genes; ΔPSI > 0.05, FDR < 0.05) were identified to be alternatively spliced between the two groups. Those genes were enriched in cell migration or proliferation terms such as “the cell migration and growth-cone collapse” and “regulation of insulin-like growth factor (IGF) transport and uptake by IGF binding proteins”. Most of all, two AS genes (FN1 and FAM20A) directly interact with AFP; these relate to the regulation of IGF transport and post-translational protein phosphorylation. Interestingly, 42 genes and 27 genes were associated with gender and vascular invasion (VI), respectively, but only eighteen genes were significant in survival analysis. We especially highlight that FN1 exhibited increased differential expression of AS events (ΔPSI > 0.05), in which exons 25 and 33 were more frequently skipped in HCCs with normal (low) serum AFP compared to those with high serum AFP. Moreover, these events were gender and VI dependent. Conclusion We found that AS may influence the regulation of transcriptional differences inherent in the occurrence of HCC maintaining normal rather than elevated serum AFP levels.
The complete chloroplast genome of Lamium takesimense (Lamiaceae), an endemic species in South Korea, are presented in this article. The genome size is 150,626 bp in length, with 38.6% of GC content. It consists a large single-copy (LSC) region (82,527bp) and a small single-copy region (SSC) (17,185bp) which were separated by two inverted repeat (IRs) regions (25,457bp). The complete chloroplast genome contains 111 unique genes, including 77 protein-coding genes, 4 rRNA genes, and 30 tRNA genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.