Introduction 3D printing technology is one of the most significant technologies of the fourth industrial revolution in many industries, and the fashion industry is no exception (Sim 2017). Gartner's report predicted that the medical, aviation and consumer goods industries will see rapid increases in the adoption of 3D printing technology (Basiliere 2017). Newly built aircraft that will contain 3D printed parts will reach 75%, doctors who will use 3D printed models for simulations before actual operations will reach 25%, and the world's Top 100 companies that will develop customer-customized 3D printed products will reach 20% (Basiliere 2017). As patents for Fused Deposition Modeling (FDM) and Selective Laser Sintering (SLS) 3D printing technology expired on 2009 and 2014 respectively (Lee and Lee 2016), 3D printing technology is expanding its areas of application into various industries, including the fashion industry. Global 3D printer manufacturing companies such as Stratasys and 3D Systems are collaborating with fashion designers to exhibit distinctive designs, and Time included Stratasys' 3D printed fashion design in collaboration with Iris Van Herpen on the list of the 50 best inventions of 2011 (David 2012). However, while 3D printing technology is actively researched and developed in other fields, the utilization of 3D printing technology has been relatively less pursued in Abstract 3D printing technology has been developing rapidly and is now widely used in various fields. However, the utilization of this technology in fashion products has been relatively slow. Therefore, in this study, we attempt to determine the limitations of the 3D printed clothing production process and suggest complementary measures to offset those limitations. To attain these goals, we created actual clothes using a FDM type 3D desktop printer, which is a commonly used type. Three different types of 3D printed clothes were produced based on certain geometric shapes using TPU or ABS as printing materials. The limitations of the materials, the modeling programs and the printing, manufacturing and wearing processes were examined, and several suggestions to overcome each of the limitations were presented. Based on this research, it is expected that more diverse and active attempts to utilize 3D technology will be pursued by those who develop various fashion products.
This study created wearable fashion products with parametric design characteristics, using 3D printing technology. The goal of the study was to understand what parametric design features can be simulated with 3D modeling and printing technology, as well as to demonstrate what techniques can be used to produce fashion products using 3D printing technology. This study created two different parametric motifs using an FDM-type 3D printer with TPU and ABS as the printing materials. With those motifs, we produced three garments and two accessories. The limitations found during the process were modeling the exact measurement of the motifs that will merge with the apparel design seamlessly while maintaining the parametric features, as well as attaching the printed motifs to fabric without ruining the integrity of the textile. A significant implication of this study is that it recreates parametric designs on the human body and utilizes 3D printing technology for fashion products. This paper cast a light on a discussion about the technique can be applied on fashion design with full-sized body and encouraged designers to explore further with technological advancements in the future.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.