Hemodynamics improve after WWB or SB in patients with chronic CHF. This is attributable to the reduction in cardiac preload and afterload. Thus, thermal vasodilation can be applied with little risk if appropriately performed and may provide a new nonpharmacological therapy for CHF.
A Dirac fermion in a topological Dirac semimetal is a quadruple-degenerate quasi-particle state with a relativistic linear dispersion. Breaking either time-reversal or inversion symmetry turns this system into a Weyl semimetal that hosts double-degenerate Weyl fermion states with opposite chiralities. These two kinds of quasi-particles, although described by a relativistic Dirac equation, do not necessarily obey Lorentz invariance, allowing the existence of so-called type-II fermions. Recent theoretical discovery of type-II Weyl fermions evokes the prediction of type-II Dirac fermions in PtSe 2 -type transition metal dichalcogenides, expecting an experimental confirmation. Here, we report an experimental realization of type-II Dirac fermions in PdTe 2 by angle-resolved photoemission spectroscopy combined with ab-initio band calculations. Our experimental finding makes the first example that has both superconductivity and type-II Dirac fermions, which turns the topological material research into a new phase.
An explicit connection between the electronic structure and the anisotropic high conductivity of delafossite-type PdCoO2 has been established by angle-resolved photoemission spectroscopy (ARPES) and core-level x-ray photoemission spectroscopy. The ARPES spectra show that a large hexagonal electronlike Fermi surface (FS) consists of very dispersive Pd 4d states. The carrier velocity and lifetime are determined from the ARPES data, and the conductivity is calculated by a solution of the Boltzmann equation, which demonstrates that the high anisotropic conductivity originates from the high carrier velocity, the large two-dimensional FS, and the long lifetime of the carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.