This paper describes the POSTECH's submission to the WMT 2018 shared task on Automatic Post-Editing (APE). We propose a new neural end-to-end post-editing model based on the transformer network. We modified the encoder-decoder attention to reflect the relation between the machine translation output, the source and the postedited translation in APE problem. Experiments on WMT17 English-German APE data set show an improvement in both TER and BLEU score over the best result of WMT17 APE shared task. Our primary submission achieves-4.52 TER and +6.81 BLEU score on PBSMT task and-0.13 TER and +0.40 BLEU score for NMT task compare to the baseline.
This paper describes POSTECH's submission to the WMT 2019 shared task on Automatic Post-Editing (APE). In this paper, we propose a new multi-source APE model by extending Transformer. The main contributions of our study are that we 1) reconstruct the encoder to generate a joint representation of translation (mt) and its src context, in addition to the conventional src encoding and 2) suggest two types of multi-source attention layers to compute attention between two outputs of the encoder and the decoder state in the decoder. Furthermore, we train our model by applying various teacher-forcing ratios to alleviate exposure bias. Finally, we adopt the ensemble technique across variations of our model. Experiments on the WMT19 English-German APE data set show improvements in terms of both TER and BLEU scores over the baseline. Our primary submission achieves-0.73 in TER and +1.49 in BLEU compared to the baseline, and ranks second among all submitted systems.
Automatic Post-Editing (APE) aims to correct errors in the output of a given machine translation (MT) system. Although data-driven approaches have become prevalent also in the APE task as in many other NLP tasks, there has been a lack of qualified training data due to the high cost of manual construction. eSCAPE, a synthetic APE corpus, has been widely used to alleviate the data scarcity, but it might not address genuine APE corpora's characteristic that the post-edited sentence should be a minimally edited revision of the given MT output. Therefore, we propose two new methods of synthesizing additional MT outputs by adapting back-translation to the APE task, obtaining robust enlargements of the existing synthetic APE training dataset 1 . Experimental results on the WMT English-German APE benchmarks demonstrate that our enlarged datasets are effective in improving APE performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.