Automatic Post-Editing (APE) aims to correct errors in the output of a given machine translation (MT) system. Although data-driven approaches have become prevalent also in the APE task as in many other NLP tasks, there has been a lack of qualified training data due to the high cost of manual construction. eSCAPE, a synthetic APE corpus, has been widely used to alleviate the data scarcity, but it might not address genuine APE corpora's characteristic that the post-edited sentence should be a minimally edited revision of the given MT output. Therefore, we propose two new methods of synthesizing additional MT outputs by adapting back-translation to the APE task, obtaining robust enlargements of the existing synthetic APE training dataset 1 . Experimental results on the WMT English-German APE benchmarks demonstrate that our enlarged datasets are effective in improving APE performance.
Synthetic training data has been extensively used to train Automatic Post-Editing (APE) models in many recent studies because the quantity of human-created data has been considered insufficient. However, the most widely used synthetic APE dataset, eSCAPE, overlooks respecting the minimal editing property of genuine data, and this defect may have been a limiting factor for the performance of APE models. This article suggests adapting back-translation to APE to constrain edit distance, while using stochastic sampling in decoding to maintain diversity of outputs, to create a new synthetic APE dataset, RESHAPE. Our experiments show that (1) RESHAPE contains more samples resembling genuine APE data than eSCAPE does, and (2) using RESHAPE as new training data improves APE models' performance substantially over using eSCAPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.