contributed equally to the work. BACKGROUND AND PURPOSEChromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACHThe effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTSTreatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONSTC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.Abbreviations HCC, hepatocellular carcinoma; MCC, mitotic checkpoint complex; Mps1 (TTK), monopolar spindle 1; SAC, spindle assembly checkpoint
The Aurora kinase family of serine/threonine protein kinases comprises Aurora A, B, and C and plays an important role in mitotic progression. Several inhibitors of Aurora kinase have been developed as anti‐cancer therapeutics. Here, we examined the effects of a pan‐Aurora kinase inhibitor, AMG900, against glioblastoma cells. AMG900 inhibited proliferation of A172, U‐87MG, and U‐118MG glioblastoma cells by upregulating p53 and p21 and subsequently inducing cell cycle arrest and senescence. Abnormal cell cycle progression was triggered by dysregulated mitosis. Mitosis was prolonged due to a defect in mitotic spindle assembly. Despite the presence of an unattached kinetochore, BubR1, a component of the spindle assembly checkpoint, was not recruited. In addition, Aurora B was not recruited to central spindle at anaphase. Abnormal mitotic progression resulted in accumulation of multinuclei and micronuclei, a type of chromosome missegregation, and ultimately inhibited cell survival. Therefore, the data suggest that AMG900‐mediated inhibition of Aurora kinase is a potential anti‐cancer therapy for glioblastoma.
Hypoxia-inducible factors (HIFs) are key regulators of hypoxic responses, and their stability and transcriptional activity are controlled by several kinases. However, the regulation of HIF by protein phosphatases has not been thoroughly investigated. Here, we found that overexpression of Mg2+/Mn2+-dependent protein phosphatase 1 gamma (PPM1G), one of Ser/Thr protein phosphatases, downregulated protein expression of ectopic HIF-1α under normoxic or acute hypoxic conditions. In addition, the deficiency of PPM1G upregulated protein expression of endogenous HIF-1α under normoxic or acute oxidative stress conditions. PPM1G decreased expression of HIF-1α via the proteasomal pathway. PPM1G-mediated HIF-1α degradation was dependent on prolyl hydroxylase (PHD), but independent of von Hippel-Lindau (VHL). These data suggest that PPM1G is critical for the control of HIF-1α-dependent responses.
Cell cycle and apoptosis regulator 2 (CCAR2) is a multifaceted protein that controls diverse cellular functions; however, its function in cancer is unclear. To better understand its potential role in cancer, we examined gene expression patterns regulated by CCAR2 in cervical cancer cells. Cytokine and chemokine production by CCAR2-deficient cells increased under oxidative conditions. In particular, H2O2-treated CCAR2-depleted cells showed a significant increase in interleukin-8 (IL-8) production, indicating a negative regulation of IL-8 by CCAR2. Upregulation of IL-8 expression in CCAR2-deficient cells occurred via activation of transcription factor AP-1. The negative correlation between CCAR2 and IL-8 expression was confirmed by examining mRNA and protein levels in tissues from cervical cancer patients. Furthermore, CCAR2-regulated IL-8 expression is associated with a shorter survival of cervical cancer patients. Overall, the data suggest that CCAR2 plays a critical role in controlling both the cancer secretome and cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.