Recently SnSe, a layered chalcogenide material, has attracted a great deal of attention for its excellent p-type thermoelectric property showing a remarkable ZT value of 2.6 at 923 K. For thermoelectric device applications, it is necessary to have n-type materials with comparable ZT value. Here, we report that n-type SnSe single crystals were successfully synthesized by substituting Bi at Sn sites. In addition, it was found that the carrier concentration increases with Bi content, which has a great influence on the thermoelectric properties of n-type SnSe single crystals. Indeed, we achieved the maximum ZT value of 2.2 along b axis at 733 K in the most highly doped n-type SnSe with a carrier density of −2.1 × 1019 cm−3 at 773 K.
SnSe single crystals have recently been found to exhibit excellent thermoelectric performance with an extremely high figure of merit (ZT) value of 2.6. Although this high ZT value has attracted considerable attention, the microscopic origin of the p-type characteristics of SnSe is not yet clearly understood. Here, we directly observed and identified intrinsic point defects existing on SnSe via scanning tunneling microscopy (STM) and investigated the effect of defects on the electronic properties using density functional theory (DFT) calculations. Our results demonstrate that the most dominant Sn vacancies move the Fermi energy inside the dispersive valence band and produce extra holes throughout the system. On the other hand, Se vacancies create a nondispersive donor level and generate immobile electrons localized near the vacancy site. Our combined STM/DFT studies show that the p-type characteristics of SnSe originate from extra holes in the dispersive Bloch-like band created by Sn vacancies. We expect that our results provide important information for the development of highly efficient SnSe-based thermoelectric devices.
Bonding geometry engineering of metal–oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilt of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin‐film lattice parameters. In this study, a method to selectively engineer the octahedral bonding geometries is proposed, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering is developed using atomically designed SrRuO 3 /SrTiO 3 (SRO/STO) superlattices. In particular, the propagation of RuO 6 octahedral tilt within the SRO layers having identical thicknesses is systematically controlled by varying the thickness of adjacent STO layers. This leads to a substantial modification in the electromagnetic properties of the SRO layer, significantly enhancing the magnetic moment of Ru. This approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties.
Demands for high-performance displays with high pixel density and picture quality are ever increasing.Indium gallium nitride (InGaN)-based micro-LEDs (μLEDs) are suitable for meeting such demands owing to their high e ciency, brightness, and stability. However, the poor yield of the pick-and-place technique, defect repair, and visibility of edge lines between modules limit the applications of μLEDs. Furthermore, the external quantum e ciency (EQE) decreases (<10%) when μLED size is reduced to less than 10 μm for high pixel densities, thereby limiting the luminance. Here, we demonstrate a top-down-processed blue InGaN/GaN multiple-quantum well (MQW) nanorod-LED (nLED) can be made highly e cient as well as become an enabling technology for reducing manufacturing cost of large-screen displays. A pixel array comprising of horizontally-aligned nLEDs between pixel electrodes can be cost-effectively fabricated by applying the dielectrophoretic force to the inkjet-printed nLEDs dispersed in ink solution. To overcome size-dependent EQE reduction problem, we studied the interaction between the GaN surface and the surface passivation layer via various analyses and found that minimizing the point defects created during the passivation process is crucial to manufacturing high-performance nanoscale LEDs. Notably, the sol-gel method is advantageous for the passivation because SiO2 nanoparticles are adsorbed on the GaN surface, thereby minimizing its atomic interactions. The fabricated nLEDs exhibited an EQE of 20.2±0.6%, the highest EQE value ever reported for the LED in the nanoscale. This work opens the way for manufacturing self-emissive nLED displays that can fully meet the industry requirements of high e ciency and brightness and low-power consumption, contributing to energy saving, carbon neutrality and mitigating climate crisis.
Piezoelectricity crystallographically exists only in the in-plane direction in two-dimensional transition metal dichalcogenides. Here, we demonstrated flexoelectricity-tunable out-of-plane piezoelectricity in semiconducting 2H-MoTe flakes by creating surface corrugation. In particular, the strong out-of-plane piezoelectricity and its spatial variation depending on local flexoelectricity was observed even though crystallographically there exists only in-plane piezoelectricity. Surface corrugation-mediated flexoelectricity tuning can be applied to other two-dimensional or thin-layered materials and, furthermore, the results could provide useful information on the interweaving nature between mechanical stimulus and electric dipole in low-dimensional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.