Recently SnSe, a layered chalcogenide material, has attracted a great deal of attention for its excellent p-type thermoelectric property showing a remarkable ZT value of 2.6 at 923 K. For thermoelectric device applications, it is necessary to have n-type materials with comparable ZT value. Here, we report that n-type SnSe single crystals were successfully synthesized by substituting Bi at Sn sites. In addition, it was found that the carrier concentration increases with Bi content, which has a great influence on the thermoelectric properties of n-type SnSe single crystals. Indeed, we achieved the maximum ZT value of 2.2 along b axis at 733 K in the most highly doped n-type SnSe with a carrier density of −2.1 × 1019 cm−3 at 773 K.
IntroductionTraumatic brain injury (TBI) is associated with a profound immunological dysfunction manifested by a severe shift from T-helper type 1 (Th1) to T-helper type 2 (Th2) response. This predisposes patients to infections, sepsis, and adverse outcomes. Probiotic bacteria have been shown to balance the Th1/Th2 cytokines in allergic murine models and patients. For the present study, we hypothesized that the enteral administration of probiotics would adjust the Th1/Th2 imbalance and improve clinical outcomes in TBI patients.MethodsWe designed a prospective, randomized, single-blind study. Patients with severe TBI and Glasgow Coma Scale scores between 5 and 8 were included, resulting in 26 patients in the control group and 26 patients in the probiotic group. All patients received enteral nutrition via a nasogastric tube within 24 to 48 hours following admission. In addition, the probiotic group received 109 bacteria of viable probiotics per day for 21 days. The associated serum levels of Th1/Th2 cytokines, Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) scores, nosocomial infections, length of ICU stay, and 28-day mortality rate were studied.ResultsThe patients responded to viable probiotics, and showed a significantly higher increase in serum IL-12p70 and IFNγ levels while also experiencing a dramatic decrease in IL-4 and IL-10 concentrations. APACHE II and SOFA scores were not significantly affected by probiotic treatment. Patients in the probiotic group experienced a decreased incidence of nosocomial infections towards the end of the study. Shorter ICU stays were also observed among patients treated with probiotic therapy. However, the 28-day mortality rate was unaffected.ConclusionsThe present study showed that daily prophylactic administration of probiotics could attenuate the deviated Th1/Th2 response induced by severe TBI, and could result in a decreased nosocomial infection rate, especially in the late period.Trial registrationChiCTR-TRC-10000835.
SnSe single crystals have recently been found to exhibit excellent thermoelectric performance with an extremely high figure of merit (ZT) value of 2.6. Although this high ZT value has attracted considerable attention, the microscopic origin of the p-type characteristics of SnSe is not yet clearly understood. Here, we directly observed and identified intrinsic point defects existing on SnSe via scanning tunneling microscopy (STM) and investigated the effect of defects on the electronic properties using density functional theory (DFT) calculations. Our results demonstrate that the most dominant Sn vacancies move the Fermi energy inside the dispersive valence band and produce extra holes throughout the system. On the other hand, Se vacancies create a nondispersive donor level and generate immobile electrons localized near the vacancy site. Our combined STM/DFT studies show that the p-type characteristics of SnSe originate from extra holes in the dispersive Bloch-like band created by Sn vacancies. We expect that our results provide important information for the development of highly efficient SnSe-based thermoelectric devices.
Bonding geometry engineering of metal–oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilt of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin‐film lattice parameters. In this study, a method to selectively engineer the octahedral bonding geometries is proposed, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering is developed using atomically designed SrRuO 3 /SrTiO 3 (SRO/STO) superlattices. In particular, the propagation of RuO 6 octahedral tilt within the SRO layers having identical thicknesses is systematically controlled by varying the thickness of adjacent STO layers. This leads to a substantial modification in the electromagnetic properties of the SRO layer, significantly enhancing the magnetic moment of Ru. This approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.