Modulation of the peripheral nervous system (PNS) has a great potential for therapeutic intervention as well as restore bodily functions. Recent interest has focused on autonomic nerves, as they regulate extensive functions implicated in organ physiology, chronic disease state and appear tractable to targeted modulation of discrete nerve units. Therapeutic interventions based on specific bioelectronic neuromodulation depend on reliable neural interface to stimulate and record autonomic nerves. Furthermore, the function of stimulation and recording requires energy which should be delivered to the interface. Due to the physiological and anatomical challenges of autonomic nerves, various forms of this active neural interface need to be developed to achieve next generation of neural interface for bioelectronic medicine. In this article, we present an overview of the state-of-the-art for peripheral neural interface technology in relation to autonomic nerves. Also, we reveal the current status of wireless neural interface for peripheral nerve applications. Recent studies of a novel concept of self-sustainable neural interface without battery and electronic components are presented. Finally, the recent results of non-invasive stimulation such as ultrasound and magnetic stimulation are covered and the perspective of the future research direction is provided.
Recently, methods for the treatment of chronic diseases and disorders through the modulation of peripheral and autonomic nerves have been proposed. To investigate various treatment methods and results, experiments are being conducted on animals such as rabbits and rat. However the diameter of the targeted nerves is small (several hundred μm) and it is difficult to modulate small nerves. Therefore, a neural interface that is stable, easy to implant into small nerves, and is biocompatible is required. Here, to develop an advanced neural interface, a thiol-ene/acrylate-based shape memory polymer (SMP) was fabricated with a double clip design. This micro-patterned design is able to be implanted on a small branch of the sciatic nerve, as well as the parasympathetic pelvic nerve, using the shape memory effect (SME) near body temperature. Additionally, the IrO2 coated neural interface was implanted on the common peroneal nerve in order to perform electrical stimulation and electroneurography (ENG) recording. The results demonstrate that the proposed neural interface can be used for the modulation of the peripheral nerve, including the autonomic nerve, towards bioelectronic medicine.
Human skeletal muscle is widely considered to be the most efficient actuator, leading to extensive research on developing artificial muscles. Bioinspired technologies such as soft robotics and biomimetics are used to produce artificial muscles with performance characteristics similar to those of their biological counterpart. Despite the complexity of human skeletal muscle, advanced engineering materials and unique approaches can help develop an artificial muscle that replicates its kinematic motions. Herein, biomimetic modular artificial muscle (BiMAM), which is the culmination of different design strategies, is presented, and fabrication methods aimed at developing this BiMAM. This chemically driven modular artificial muscle uses shape memory alloy coated with nanomaterials and nano‐catalysts. Herein, a high‐energy density fuel is employed to actuate this artificial muscle, enabling fast and efficient outputs. Multiple performance characteristics are determined by conducting controlled experiments. Various methods are demonstrated to control the fuel‐based valve system and the actuation of the chemically driven artificial muscle. Lastly, to evaluate its functionality, the curling movement of a robotic finger using BiMAM is demonstrated.
Microneedle electrode (ME) is used to monitor bioelectrical signals by penetrating via the skin, and it compensates for a limitation of surface electrodes. However, existing fabrication of ME have limited in controlling the shape of microneedles, which is directly relevant to the performance and durability of microneedles as an electrode. In this study, a novel method using 3D printing is developed to control needle bevel angles. By controlling the angle of printing direction, needle bevel angles are changed. Various angles of printing direction (0–90°) are investigated to fabricate moldings, and those moldings are used for microneedle fabrications using biocompatible polyimide (PI). The height implementation rate and aspect ratio are also investigated to optimize PI microneedles. The penetration test of the fabricated microneedles is conducted in porcine skin. The PI microneedle of 1000 μm fabricated by the printing angle of 40° showed the bevel angle of 54.5°, which can penetrate the porcine skin. The result demonstrates that this suggested fabrication can be applied using various polymeric materials to optimize microneedle shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.