Human interaction with machines can be made easy, comfortable, and accessible by introducing user-friendly interfaces. In the case of wearable devices, their sensors and other interfacing elements are very well within the proximity of users. Since biopotential signals can be accessed from the surface of the human skin, users can have seamless interaction with wearable human-computer interactive devices. Rigid interfaces can hinder the user experience, and therefore, the need for soft biopotential interfaces is important. Imperceptible and unobtrusive soft biopotential interfaces will drastically enhance many aspects of human-computer interaction. This paper reviews the use of soft, flexible, and stretchable biopotential interfaces in wearable human-machine interactive devices. Additionally, attention is brought to the scope of other possible applications of soft biopotential interfaces in wearable devices.
Human skeletal muscle is widely considered to be the most efficient actuator, leading to extensive research on developing artificial muscles. Bioinspired technologies such as soft robotics and biomimetics are used to produce artificial muscles with performance characteristics similar to those of their biological counterpart. Despite the complexity of human skeletal muscle, advanced engineering materials and unique approaches can help develop an artificial muscle that replicates its kinematic motions. Herein, biomimetic modular artificial muscle (BiMAM), which is the culmination of different design strategies, is presented, and fabrication methods aimed at developing this BiMAM. This chemically driven modular artificial muscle uses shape memory alloy coated with nanomaterials and nano‐catalysts. Herein, a high‐energy density fuel is employed to actuate this artificial muscle, enabling fast and efficient outputs. Multiple performance characteristics are determined by conducting controlled experiments. Various methods are demonstrated to control the fuel‐based valve system and the actuation of the chemically driven artificial muscle. Lastly, to evaluate its functionality, the curling movement of a robotic finger using BiMAM is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.