Colorectal cancer (CRC) is known as the third common cancer worldwide and an important public health problem in different populations. Several genetics and environmental risk factors are involved in the development and progression of CRC including chromosomal abnormalities, epigenetic alterations, and unhealthy lifestyle. Identification of risk factors and biomarkers could lead to a better understanding of molecular pathways involved in CRC pathogenesis. MicroRNAs (miRNAs) are important regulatory molecules which could affect a variety of cellular and molecular targets in CRC. A large number of studies have indicated deregulations of some known tissue-specific miRNAs, for example, miR-21, miR-9, miR-155, miR-17, miR-19, let-7, and miR-24 as well as circulating miRNAs, for example, miR-181b, miR-21, miR-183, let-7g, miR-17, and miR-126, in patients with CRC. In the current review, we focus on the findings of preclinical and clinical studies performed on tissue-specific and circulating miRNAs as diagnostic biomarkers and therapeutic targets for the detection of patients at various stages of CRC.
Chronic obstructive pulmonary disease (COPD) is known as a progressive lung disease and the fourth leading cause of death worldwide. Despite valuable efforts, there is still no accurate diagnostic and prognostic tool for COPD. Hence, it seems that finding new biomarkers could contribute to provide better therapeutic platforms for COPD patients. Among various biomarkers, microRNAs (miRNAs) have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. It has been shown that deregulation of miRNAs targeting a variety of cellular and molecular pathways such as Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad could be involved in COPD pathogenesis. Multiple lines of evidence have indicated that extracellular vesicles such as exosomes could carry a variety of cargos (i.e., mRNAs, miRNAs, and proteins) which transfer various cellular and molecular signals to recipient cells. Here, we summarized various miRNAs which could be applied as diagnostic and prognostic biomarkers in the treatment of patients with COPD. Moreover, we highlighted the role of extracellular vesicles containing miRNAs as diagnostic and prognostic biomarkers in COPD patients.
The results of this systematic review demonstrated that respiratory viral infections have an important role in the acute exacerbation of COPD (AECOPD). In addition, determining the exact geographic epidemiology of these viruses is very important to manage the treatment of these infections.
Aim: Acinetobacter baumannii, an increasingly serious health threat, is considered as one of the six most dangerous microbes of high mortality rate. However, treatment of its infections is difficult because of the lack of efficient antibiotic or commercial vaccines. Passive immunization through administration of specific antibodies such as IgY, could be an attractive practical solution. Methods and Results: In the current study, antigenicity of two recombinant outer membrane proteins (OmpA and Omp34) as well as inactivated whole cell of A. baumannii was assessed by ELISA. Moreover, prophylactic effects of specific IgY antibodies (avian antibody) raised against these antigens were evaluated in a murine pneumonia model. The specific IgY antibodies had various prophylactic effects in the pneumonia model. OmpA was the most potent antigen in terms of triggering antibody and conferring protection. While a synergic effect was observed in ELISA for antibodies raised against a combination of OmpA and Omp34 (which are known as Omp33-36 and Omp34 kDa), an antagonistic effect was unexpectedly seen in challenges. The reason for this phenomenon remains to be precisely addressed. Conclusion: All the specific IgY antibodies could protect mice against pneumonia caused by A. baumannii. Significance and Impact of the Study: The specific IgY antibodies could be employed as a pharmaceutical against pneumonia caused by A. baumannii. emergence of highly antibiotic-resistant strains including multidrug-resistant (MDR) and pan-drug-resistant strains (Wang et al. 2003;Dijkshoorn et al. 2007;Pach on and McConnell 2014). In spite of the increasing prevalence of MDR strains and their high mortality, an efficient antibiotic is not provided by the pharmaceutical industry for the treatment of its infections (Pach on and McConnell 2014). These implications highlight active and passive immunizations as cost-effective approaches to reduce the clinical and economic burden of infections caused by this notorious pathogen (Ahmad et al. 2016).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.