It is generally accepted that the functional activity of biological macromolecules requires tightly packed three-dimensional structures. Recent theoretical and experimental evidence indicates, however, the importance of molecular flexibility for the proper functioning of some proteins. We examined high resolution structures of proteins in various functional categories with respect to the secondary structure assessment. The latter was considered as a characteristic of the inherent flexibility of a polypeptide chain. We found that the proteins in functionally competent conformational states might be comprised of 20 -70% flexible residues. For instance, proteins involved in gene regulation, e.g. transcription factors, are on average largely disordered molecules with over 60% of amino acids residing in "coiled" configurations. In contrast, oxygen transporters constitute a class of relatively rigid molecules with only 30% of residues being locally flexible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.