A new degradant of Nafcillin Sodium was found at a level of 1.8% w/w during the gradient reversed-phase HPLC analysis in stability storage samples. This impurity was identified by LC-MS and was characterized by 1H-NMR, 13C-NMR, LC/MS/MS, elemental analysis, and IR techniques. Based on the structural elucidation data, this impurity was named as N-[(2S)-2-carboxy-2-{[(2-ethoxynaphthalen-1-yl)carbonyl]amino}ethylidene]-3-({N-[(2-ethoxynaphthalen-1-yl)carbonyl]glycyl}sulfanyl)-D-valine. This impurity was prepared by isolation and was co-injected into the HPLC system to confirm the retention time. To the best of our knowledge, this impurity has not been reported elsewhere. The identification and structural elucidation of this degradant impurity has been discussed in detail.
Background
The aim of the present study was to develop and validate an inductively coupled plasma optical emission spectroscopic (ICP–OES) method for quantification of elemental impurities, i.e., Lead, Palladium, and Zinc, in voriconazole drug substance, and this method was employed for the regular sample analysis of Lead, Palladium, and Zinc in voriconazole drug substance for pharmaceutical use. The method has been validated using RF power of 1150 W, auxiliary gas of 0.5 L/min, and nebulizer flow of 0.4 L/min and plasma view at axial mode for Lead and Palladium and radial mode for Zinc. The wavelength was monitored for Lead, Palladium, and Zinc at 220.3 nm, 340.4 nm, and 213.8 nm respectively.
Results
The method is selective and is capable of detecting desired elemental impurities with regulatory acceptance limits in the presence of other elements. The validation experiments involve the demonstration of system suitability, specificity, LOD and LOQ, linearity, precision, and accuracy experiments. The linearity results obtained ˃ 0.9990 for all three impurities.
Conclusion
The proposed method is simple, sensitive quality control tool for the simultaneous quantitative determination of Lead, Palladium, and Zinc at low levels in voriconazole drug substance.
Graphical abstract
A simple and sensitive ion chromatography method has been developed for the determination of cyclopropylamine (CPA) in nevirapine (NEV) and moxifloxacin HCl (MOX) pharmaceutical drug substances. Efficient chromatographic separation was achieved on a Metrosep C4, 5 μm (250 mm × 4.0 mm) column. The mobile phase consists of 5 mM hydrochloric acid containing 10% (v/v) acetonitrile and was delivered in an isocratic mode at a flow rate of 0.9 mL min−1 at 27°C. A conductometric detector was used for the detection of the analyte. The drug substances were subjected to stress conditions including oxidation, thermal, photolytic and humidity for the evaluation of the stability-indicating nature of the method. The method was validated for specificity, precision, linearity, accuracy and solution stability. The limit of detection (LOD) and limit of quantification (LOQ) values are 0.10 μg mL−1 and 0.37 μg mL−1 respectively. The linearity range of the method is between 0.37 μg mL−1 and 1.5 μg mL−1 and the correlation coefficient is found to be 0.9971. The average recoveries of CPA in NEV and MOX are 97.0% and 98.0%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.