A new degradant of Nafcillin Sodium was found at a level of 1.8% w/w during the gradient reversed-phase HPLC analysis in stability storage samples. This impurity was identified by LC-MS and was characterized by 1H-NMR, 13C-NMR, LC/MS/MS, elemental analysis, and IR techniques. Based on the structural elucidation data, this impurity was named as N-[(2S)-2-carboxy-2-{[(2-ethoxynaphthalen-1-yl)carbonyl]amino}ethylidene]-3-({N-[(2-ethoxynaphthalen-1-yl)carbonyl]glycyl}sulfanyl)-D-valine. This impurity was prepared by isolation and was co-injected into the HPLC system to confirm the retention time. To the best of our knowledge, this impurity has not been reported elsewhere. The identification and structural elucidation of this degradant impurity has been discussed in detail.
A simple and sensitive ion chromatography method has been developed for the determination of cyclopropylamine (CPA) in nevirapine (NEV) and moxifloxacin HCl (MOX) pharmaceutical drug substances. Efficient chromatographic separation was achieved on a Metrosep C4, 5 μm (250 mm × 4.0 mm) column. The mobile phase consists of 5 mM hydrochloric acid containing 10% (v/v) acetonitrile and was delivered in an isocratic mode at a flow rate of 0.9 mL min−1 at 27°C. A conductometric detector was used for the detection of the analyte. The drug substances were subjected to stress conditions including oxidation, thermal, photolytic and humidity for the evaluation of the stability-indicating nature of the method. The method was validated for specificity, precision, linearity, accuracy and solution stability. The limit of detection (LOD) and limit of quantification (LOQ) values are 0.10 μg mL−1 and 0.37 μg mL−1 respectively. The linearity range of the method is between 0.37 μg mL−1 and 1.5 μg mL−1 and the correlation coefficient is found to be 0.9971. The average recoveries of CPA in NEV and MOX are 97.0% and 98.0%, respectively.
A capillary gas chromatography method using a flame ionization detector has been developed for the trace analysis of allylamine (AA) in sevelamer hydrochloride (SVH) and sevelamer carbonate (SVC) drug substances. The method utilized a mega bore capillary column DB-CAM (30 m × 0.53 mm × 1.0 μm) with a bonded and cross-linked, base-deactivated polyethylene glycol stationary phase and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for allylamine were 2 μg/g and 6 μg/g, respectively. The method was found to be linear in the range between 6 μg/g and 148 μg/g with a correlation coefficient of 0.9990. The average recoveries obtained in SVH and SVC were 93.9% and 99.1%, respectively. The developed method was found to be robust for the determination of AA in sevelamer drug substances and also the specificity was demonstrated with a gas chromatograph coupled with a mass spectrometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.