Intensive agriculture has led to generation of a vast volume of agri-residue, prompting a reliance on conservation tillage techniques for prudent management. However, to ascertain the long-term impacts of these practices, the interrelation with the carbon fractions and the biological properties of the soil must be identified. Therefore, in a long-term experiment, five different treatments involving the incorporation of paddy straw as mulch or through disc harrow and farmer practice, including the partial burning of rice straw, were evaluated. After the harvesting of the wheat crop, soil samples collected from 3 different depths (0–15, 15–30 and 30–45 cm) were analyzed for various attributes critical to assessing soil health. Crop residue retention in both seasons (T4) improved carbon fractions, soil microflora viable cell counts and enzyme activities. The principal component analysis (PCA) revealed a positive interaction among the organic carbon, bacterial counts and soil enzyme activities. Thus, a positive impact of conservation tillage techniques involving a minimal disturbance was recorded as improvement in the soil properties, build-up of organic carbon, and wheat productivity in rice–wheat cropping systems.
Mulching plays an important role in production of agricultural and horticultural crops in the current scenario of declining water table, soil degradation and climate change. The main objectives of mulching are to prevent loss of water by evaporation, prevention of soil erosion, weed control, to reduce fertilizer leaching, to promote soil productivity, to enhance yield and quality of field and fruit crops. So, mulching is useful to save our underground water resource, soil and environment for sustainable crop production. In this review paper, the literature clearly shows pronounced effects of mulching on soil health by improving the soil structure, soil fertility, biological activities, avoid soil degradation in addition to moisture conservation, regulating temperature, encouraging change in favourable micro-climate, check weed growth and ultimately increasing the productivity, quality, profitability and sustainability of crops and cropping systems irrespective of the system/situation.
In order to study the contribution of long-term tillage and rice straw management practices on wheat yield and soil properties in a rice–wheat system, a field study was conducted with seven main plot treatments as straw management practices, i.e., puddled transplanted rice + zero till drill sown wheat without paddy and wheat straw (R1), puddled transplanted rice + conventional tillage sown wheat without paddy and wheat straw (R2), puddled transplanted paddy without wheat straw + zero till wheat sown with Happy Seeder with paddy straw as mulch (R3), puddled transplanted rice without wheat straw+ conventional tillage sown wheat after paddy straw incorporation with disc harrow (R4), puddled transplanted rice without wheat straw + zero till sown wheat after paddy straw incorporation with rotavator (R5), puddled transplanted rice with wheat straw + zero till sown wheat with Happy Seeder with paddy straw as mulch (R6), puddled transplanted rice + zero till drill sown wheat after partial burning of wheat and paddy straw (R7) and three subplot treatments, i.e., nitrogen (N) levels (100, 125 and 150 kg ha−1), in a rice–wheat system-cropping system during 2017–2018 and 2018–2019 in a split plot experiment. Among different treatments, the straw management practices significantly influenced yield and yield attributes as well as the nutrient availability in soil. The application of 100 kg N ha−1 resulted in a significantly higher partial factor productivity (PFPN) of N over other levels of N application. The reduction in wheat yields obtained with conventional sowing of wheat without straw/straw burning/removal cannot be compensated even with an additional 50 kg N ha−1 to that obtained with straw retention or incorporation. In addition to saving N, crop residue recycling also helped to improve soil properties, grain quality, profitability, and air quality considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.