The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV-or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8 ؉ T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) ␣ and  chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR ␣ and TCR  chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.
Supplemental Digital Content is available in the text.
Background Awake intubation is the standard of care for management of the anticipated difficult airway. The performance of awake intubation may be perceived as complex and time-consuming, potentially leading clinicians to avoid this technique of airway management. This retrospective review of awake intubations at a large academic medical center was performed to determine the average time taken to perform awake intubation, its effects on hemodynamics, and the incidence and characteristics of complications and failure. Methods Anesthetic records from 2007 to 2014 were queried for the performance of an awake intubation. Of the 1,085 awake intubations included for analysis, 1,055 involved the use of a flexible bronchoscope. Each awake intubation case was propensity matched with two controls (1:2 ratio), with similar comorbidities and intubations performed after the induction of anesthesia (n = 2,170). The time from entry into the operating room until intubation was compared between groups. The anesthetic records of all patients undergoing awake intubation were also reviewed for failure and complications. Results The median time to intubation for patients intubated post induction was 16.0 min (interquartile range: 13 to 22) from entrance into the operating room. The median time to intubation for awake patients was 24.0 min (interquartile range: 19 to 31). The complication rate was 1.6% (17 of 1,085 cases). The most frequent complications observed were mucous plug, endotracheal tube cuff leak, and inadvertent extubation. The failure rate for attempted awake intubation was 1% (n = 10). Conclusions Awake intubations have a high rate of success and low rate of serious complications and failure. Awake intubations can be performed safely and rapidly.
BACKGROUND: The aim of our study is to evaluate the efficacy of applying lidocaine 25 mg-prilocaine-25 mg/G cream (EMLA 5%) on the uterine cervix for pain relief when performing hysterosalpingography (HSG). METHODS: Eighty-two patients undergoing HSG as part of infertility evaluation were randomized into groups receiving EMLA (42) or placebo cream (40) in a double-blinded prospective study from which four women were later excluded. The cream was applied to the uterine cervix by means of a cervical cup 30 min before the HSG. Pain perception related to the HSG procedure was scored by visual analogue scale (VAS) at five predefined steps: after speculum application, after cervical instrumentation of the tenaculum and cannula, at the end of uterine filling, at completion of tubal spillage, and immediately following instrument removal. In addition, the patients were asked to retrospectively rate the pain during the entire procedure in a telephone interview the following day. RESULTS: Cervical instrumentation was found to be the most painful step of HSG (P < 0.001). When comparing the VAS pain scores, cervical instrumentation in the EMLA-treated patients was associated with significantly less pain than the control group: 3.3+ + + + + 2.9 versus 4.9 + + + + + 2.7, respectively (P 5 0.02). CONCLUSION: Topical application of EMLA 5% cream on the uterine cervix before performing HSG significantly reduced the pain during this procedure.
Background Postdischarge nausea and vomiting after ambulatory surgery is a common problem that is not adequately addressed in current practice. This prospective, randomized, double-blind, parallel-group, placebo-controlled study was designed to test the hypothesis that oral olanzapine is superior to placebo at preventing postdischarge nausea and vomiting. Methods In a single-center, double-blind, randomized, placebo-controlled trial, the authors compared a single preoperative dose of olanzapine 10 mg to placebo, in adult female patients 50 years old or less, undergoing ambulatory gynecologic or plastic surgery with general anesthesia. All patients received standard antiemetic prophylaxis with dexamethasone and ondansetron. The primary composite outcome was nausea and/or vomiting in the 24 h after discharge. Secondary outcomes included severe nausea, vomiting, and side effects. Results A total of 140 patients were randomized and evaluable. The primary outcome occurred in 26 of 69 patients (38%) in the placebo group and in 10 of 71 patients (14%) in the olanzapine group (relative risk, 0.37; 95% CI, 0.20 to 0.72; P = 0.003). Severe nausea occurred in 14 patients (20%) in the placebo group and 4 patients (6%) in the olanzapine group (relative risk, 0.28; 95% CI, 0.10 to 0.80). Vomiting occurred in eight patients (12%) in the placebo group and two patients (3%) in the olanzapine group (relative risk, 0.24; 95% CI, 0.05 to 1.10). The median score for sedation (scale 0 to 10, with 10 being highest) in the 24 h after discharge was 4 (interquartile range, 2 to 7) in the placebo group and 6 (interquartile range, 3 to 8) in the olanzapine group (P = 0.023). Conclusions When combined with ondansetron and dexamethasone, the addition of olanzapine relative to placebo decreased the risk of nausea and/or vomiting in the 24 h after discharge from ambulatory surgery by about 60% with a slight increase in reported sedation. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.