Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations.
The importance of west verging structures at the western flank of the Andes, parallel to the subduction zone, appears currently minimized. This hampers our understanding of the Andes‐Altiplano, one of the most significant mountain belts on Earth. We analyze a key tectonic section of the Andes at latitude 33.5°S, where the belt is in an early stage of its evolution, with the aim of resolving the primary architecture of the orogen. We focus on the active fault propagation–fold system in the Andean cover behind the San Ramón Fault, which is critical for the seismic hazard in the city of Santiago and crucial to decipher the structure of the West Andean Thrust (WAT). The San Ramón Fault is a thrust ramp at the front of a basal detachment with average slip rate of ∼0.4 mm/yr. Young scarps at various scales imply plausible seismic events up to Mw 7.4. The WAT steps down eastward from the San Ramón Fault, crossing 12 km of Andean cover to root beneath the Frontal Cordillera basement anticline, a range ∼5 km high and >700 km long. We propose a first‐order tectonic model of the Andes involving an embryonic intracontinental subduction consistent with geological and geophysical observations. The stage of primary westward vergence with dominance of the WAT at 33.5°S is evolving into a doubly vergent configuration. A growth model for the WAT‐Altiplano similar to the Himalaya‐Tibet is deduced.Wesuggest that the intracontinental subduction at theWAT is amechanical substitute of a collision zone, rendering the Andean orogeny paradigm obsolete.Our work has been supported by the binational French‐Chilean ECOS‐Conicyt program (project C98U02), the French Agence Nationale pour la Recherche, Project Sub Chile (ANR‐05‐ CATT‐014), and the Chilean ICM project “Millennium Science Nucleus of Seismotectonics and Seismic Hazard,
The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. The moment magnitude (Mw) 8.1 Iquique earthquake of 1 April 2014 broke a highly coupled portion of this gap. To understand the seismicity preceding this event, we studied the location and mechanisms of the foreshocks and computed Global Positioning System (GPS) time series at stations located on shore. Seismicity off the coast of Iquique started to increase in January 2014. After 16 March, several Mw > 6 events occurred near the low-coupled zone. These events migrated northward for ~50 kilometers until the 1 April earthquake occurred. On 16 March, on-shore continuous GPS stations detected a westward motion that we model as a slow slip event situated in the same area where the mainshock occurred.
To address the problem of the great variability of the mechanical state of subduction zones, we investigate the mechanics of back arc spreading and seismic decoupling. Back arc spreading is assumed to be due to rifting of the upper plate and hence occurs when trench‐normal tension reaches a critical value. Seismic decoupling is assumed to occur when the normal stress at the frictional interface is decreased by an amount sufficient to cross the friction stability transition. Two forces are important in this problem. The first is a small component of the slab pull force which remains unbalanced by the subduction resistance and exerts a vertical suction force at the trench. The second is a sea anchor force exerted on the slab that resists its lateral motion, assumed to occur at the upper plate velocity. Both forces contribute to the coupling problem: only the sea anchor force is responsible for back arc spreading. The unbalanced slab pull force is determined from a force balance for subduction, the sea anchor force is computed as the hydrodynamic resistance to the facewise translation of an elliptical disc through a viscous fluid. The model predicts three regimes: seismically coupled compressional arcs with advancing upper plates; seismically decoupled extensional arcs with retreating upper plates, and strongly extensional arcs which also have back arc spreading. This model is applied in detail to the Izu‐Bonin‐Marianas system. It shows that back arc spreading occurs when the integrated tension in the upper plate exceeds a value of about 1×1013 N m−1 and requires a residual tension of about a third that to drive the back arc spreading once rifting is completed. It shows why the plate interface near Guam is seismically coupled, while the plate boundary everywhere farther north is decoupled. When applied globally, it successfully predicts the state of seismic coupling and back arc spreading in more than 80% of the world's subduction zones. Of the remaining, half can be seen to contain additional complications not included in the model. About 10% of cases remain unexplained, but some of these may have incorrectly determined seismic coupling coefficients.
SUMMARY The different phases of the earthquake cycle can produce measurable deformation of the Earth's surface. This work is aimed at describing the evolution of that deformation in space and time, as well as the distribution of causal slip on the fault at depth. We have applied GPS and synthetic aperture radar (SAR) interferometry (InSAR) techniques to northern Chile, where fast plate convergence rates are associated with large subduction earthquakes and extensive crustal deformation. The region of northern Chile between 18°S and 23°S is one of the most important seismic gaps in the world, with no rupture having occurred since 1877. In 1995, the Mw= 8.1 Antofagasta earthquake ruptured the subduction interface over a length of 180 km in the region immediately to the south of this 450 km long gap. The coseismic deformation associated with this event has been documented previously. Here we use GPS position time‐series for 40 benchmarks (measured between 1996 and 2000) and ERS SAR interferograms (for the interval between 1995 and 1999) to map both the post‐seismic deformation following the 1995 event and the ongoing interseismic deformation in the adjacent gap region. In the seismic gap, the interseismic velocities of 20–30 mm yr−1 to the east with respect to South America are mapped. Both the GPS and the InSAR measurements can be modelled with 100 per cent coupling of the thrust interface of the subduction to a depth of 35 km, with a transition zone extending down to 55 km depth. The slip rate in that zone increases linearly from zero to the plate convergence rate. South of the gap, the interferometric map shows interseismic deformation superimposed with deformation following the 1995 earthquake and covering the same area as the coseismic deformation. Some 40 per cent of this deformation is related to seismic activity in the 3.3 yr following the 1995 event, in particular slip during a Mw= 7.1 earthquake in 1998. However, most of the signal (60 per cent) corresponds to post‐seismic deformation resulting from widespread aseismic slip in the subduction interface. The afterslip appears to have occurred down‐dip in the transition zone at 35–55 km depth and to have propagated laterally northwards at 25–45 km depth under the Mejillones Peninsula, which is a prominent geomorphological feature at the boundary between the 1877 and 1995 rupture zones. We propose a simple slip model for the seismic cycle associated with the Antofagasta earthquake, where the transition zone alternates between aseismic shear and seismic slip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.