These results suggest that the increased "sensitivity" to caffeine of MHS swine muscle fibers is a nonspecific response related, at least in part, to the high resting [Ca2+]i and not an increased caffeine sensitivity of the sarcoplasmic reticulum Ca2+ release channel per se.
Stellate ganglion neurons, important mediators of cardiopulmonary neurotransmission, are surrounded by satellite glial cells (SGCs), which are essential for the function, maintenance, and development of neurons. However, it remains unknown whether SGCs in adult sympathetic ganglia exhibit any functional diversity, and what role this plays in modulating neurotransmission. We performed single‐cell RNA sequencing of mouse stellate ganglia (n = 8 animals), focusing on SGCs (n = 11,595 cells). SGCs were identified by high expression of glial‐specific transcripts, S100b and Fabp7. Microglia and Schwann cells were identified by expression of C1qa/C1qb/C1qc and Ncmap/Drp2, respectively, and excluded from further analysis. Dimensionality reduction and clustering of SGCs revealed six distinct transcriptomic subtypes, one of which was characterized the expression of pro‐inflammatory markers and excluded from further analyses. The transcriptomic profiles and corresponding biochemical pathways of the remaining subtypes were analyzed and compared with published astrocytic transcriptomes. This revealed gradual shifts of developmental and functional pathways across the subtypes, originating from an immature and pluripotent subpopulation into two mature populations of SGCs, characterized by upregulated functional pathways such as cholesterol metabolism. As SGCs aged, these functional pathways were downregulated while genes and pathways associated with cellular stress responses were upregulated. These findings were confirmed and furthered by an unbiased pseudo‐time analysis, which revealed two distinct trajectories involving the five subtypes that were studied. These findings demonstrate that SGCs in mouse stellate ganglia exhibit transcriptomic heterogeneity along maturation or differentiation axes. These subpopulations and their unique biochemical properties suggest dynamic physiological adaptations that modulate neuronal function.
ORFΔcoq2Δ, yeast double mutant harboring a gene deletion in a designated open reading frame plus a deletion in COQ2; pABA, para-aminobenzoic acid; PC, phosphatidylcholine; Pyr12, 1-pyrene dodecanoic acid; SD, synthetic dextrose medium; vCLAMP, vacuole-mitochondria patch; WT, wild-type parental yeast strain; YPD, rich growth medium containing dextrose as a fermentable carbon source; YPG, rich growth medium contain glycerol as the sole non-fermentable carbon source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.