This paper presents a method for combining query-relevance with information-novelty in the context of text retrieval and summarization.The Maximal Marginal Relevance (MMR) criterion strives to reduce redundancy while maintaining query relevance in re-ranking retrieved documents and in selecting apprw priate passages for text summarization. Preliminary results indicate some benefits for MMR diversity ranking in document retrieval and in single document summarization. The latter are borne out by the recent results of the SUMMAC conference in the evaluation of summarization systems. However, the clearest advantage is demonstrated in constructing non-redundant multi-document summaries, where MMR results are clearly superior to non-MMR passage selection.
Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-ofthe-art results of bpc/perplexity to 0.99 on en-wiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch 1 . Jack W Rae, Chris Dyer, Peter Dayan, and Timothy P Lillicrap. 2018. Fast parametric learning with activation memorization. arXiv preprint arXiv:1803.10049.Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative position representations. arXiv preprint arXiv:1803.02155.
Meaning Representation (AMR) is a semantic formalism for which a growing set of annotated examples is available. We introduce the first approach to parse sentences into this representation, providing a strong baseline for future improvement. The method is based on a novel algorithm for finding a maximum spanning, connected subgraph, embedded within a Lagrangian relaxation of an optimization problem that imposes linguistically inspired constraints. Our approach is described in the general framework of structured prediction, allowing future incorporation of additional features and constraints, and may extend to other formalisms as well. Our open-source system, JAMR, is available at:http://github.com/jflanigan/jamr
Real-world relational data are seldom stationary, yet traditional collaborative filtering algorithms generally rely on this assumption. Motivated by our sales prediction problem, we propose a factor-based algorithm that is able to take time into account. By introducing additional factors for time, we formalize this problem as a tensor factorization with a special constraint on the time dimension. Further, we provide a fully Bayesian treatment to avoid tuning parameters and achieve automatic model complexity control. To learn the model we develop an efficient sampling procedure that is capable of analyzing large-scale data sets. This new algorithm, called Bayesian Probabilistic Tensor Factorization (BPTF), is evaluated on several real-world problems including sales prediction and movie recommendation. Empirical results demonstrate the superiority of our temporal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.