The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports,
Meaning Representation (AMR) is a semantic formalism for which a growing set of annotated examples is available. We introduce the first approach to parse sentences into this representation, providing a strong baseline for future improvement. The method is based on a novel algorithm for finding a maximum spanning, connected subgraph, embedded within a Lagrangian relaxation of an optimization problem that imposes linguistically inspired constraints. Our approach is described in the general framework of structured prediction, allowing future incorporation of additional features and constraints, and may extend to other formalisms as well. Our open-source system, JAMR, is available at:http://github.com/jflanigan/jamr
We present a novel abstractive summarization framework that draws on the recent development of a treebank for the Abstract Meaning Representation (AMR). In this framework, the source text is parsed to a set of AMR graphs, the graphs are transformed into a summary graph, and then text is generated from the summary graph. We focus on the graph-tograph transformation that reduces the source semantic graph into a summary graph, making use of an existing AMR parser and assuming the eventual availability of an AMR-totext generator. The framework is data-driven, trainable, and not specifically designed for a particular domain. Experiments on goldstandard AMR annotations and system parses show promising results. Code is available at: https://github.com/summarization
Language generation from purely semantic representations is a challenging task. This paper addresses generating English from the Abstract Meaning Representation (AMR), consisting of re-entrant graphs whose nodes are concepts and edges are relations. The new method is trained statistically from AMRannotated English and consists of two major steps: (i) generating an appropriate spanning tree for the AMR, and (ii) applying tree-tostring transducers to generate English. The method relies on discriminative learning and an argument realization model to overcome data sparsity. Initial tests on held-out data show good promise despite the complexity of the task. The system is available open-source as part of JAMR at:http://github.com/jflanigan/jamr
Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Largescale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.