Perennial cankers and consequent grapevine dieback are a major problem in vineyards of Sonora and Baja California, the most important grape-production areas of Mexico. In order to identify the canker-causing agents, symptomatic arms, cordons, and trunks were collected from 13 and 6 vineyards in Sonora and Baja California, respectively. Two Botryosphaeriaceae spp., Lasiodiplodia theobromae and Diplodia seriata, were isolated frequently from infected wood and identified based on morphological and cultural characters as well as analyses of nucleotide sequences of three genes, the internal transcribed spacer region (ITS1-5.8S-ITS2), a partial sequence of the β-tubulin gene, and part of the translation elongation factor 1-α gene (EF1-α). Although both L. theobromae and D. seriata were isolated from grapevine cankers in Baja California, only L. theobromae was found in vines in the Sonora region. Pathogenicity of both species was verified by inoculation of rooted cuttings and green shoots of Thompson Seedless and Chardonnay cultivars. Isolates of L. theobromae were more virulent, based on the extent of spread in the secondary wood and green tissue, than those of D. seriata. These findings confirm L. theobromae and D. seriata as the causal agents of dieback and canker formation of grapevines in northern Mexico.
Bright yellow, interveinal chlorosis was observed for the first time on leaves of the older and mid-growth of cucurbit plants in southern Arizona and Sonora (Mexico) during September and October of 2006. Some cultivars exhibited substantial yield losses of 30 to 80%. In Arizona, symptoms were in Cucumis melo (muskmelon and honeydew melon) fields in the Yuma Valley and Hyder. In Sonora, honeydew and muskmelon, Cucurbita pepo (acorn, spaghetti, and summer [yellow and zucchini] squash), and Citrullus lanatus (watermelon) were symptomatic in Hermosillo, whereas, in Caborca, honeydew and cantaloupe developed similar symptoms. Interveinal chlorosis was observed in 60 to 100% of the plants in each field. Crops planted mid-to-late season were 100% infected, whereas, the early-season fields experienced approximately 60 to 80% incidence. All symptomatic fields in the Sonoran Desert and vicinity were infested by the whitefly Bemisia tabaci (Genn.), which was identified as the ‘B biotype’ on the basis of mitochondria COI sequence analysis (data not shown). Whitefly population levels were variable and ranged from 5 to 200 per plant. Total RNA was isolated from leaf samples collected from symptomatic plants using Tri Reagent (Molecular Research Center, Cincinnati, OH). Purified RNA was used in reverse transcriptase-PCR with primers specific to the Cucurbit yellow stunting disorder virus (CYSDV) coat protein (CP) gene (RNA2-deoxyribonucleotide coordinates 4927-4950 and 5657-5679) for the suspected whitefly-transmitted bipartite CYSDV (4). PCR yielded the CYSDV CP fragment, at 753 bp (GenBank Accession Nos. EF21058 and EF21059), which was cloned into pGEM T-Easy and sequenced in both directions using universal primers. The CYSDV CP nucleotide sequences (n = 16) obtained from acorn squash, honeydew melon, muskmelon, yellow squash, and watermelon had 99 to 100% identity. The Arizona (AZ) and Sonora (SON) CYSDV CP sequences shared 99 to 100% identity with previously described CYSDV isolates from the Eastern Hemisphere (GenBank Accession Nos. DQ903105 and DQ903108) and also with two isolates of CYSDV collected during 2004 from Zacapa Valley, Guatemala (GenBank Accession Nos. EF21060 and EF21061) (J. K. Brown, unpublished data). CYSDV is a member of the genus Crinivirus, family Closteroviridae. CYSDV was first identified in cucumber and melon crops in the Middle East approximately 15 years ago and 10 years ago in Spain (1). Most recently, this virus was introduced into Texas (2), Guatemala (J. K. Brown, unpublished data), and Arizona and California (3). CYSDV has therefore emerged as an important and potentially worldwide threat to the production of cultivated cucurbits (3). The threat appears to be significant in light of the introduction or establishment of the exotic B. tabaci biotypes B and Q vectors, which also originated in the Middle Eastern-North African-Mediterranean region. To our knowledge, this is the first report of CYSDV infecting field-grown C. pepo (four types) and watermelon, reported previously only as experimental laboratory hosts, and of CYSDV in two types of melon (C. melo) in Mexico. References: (1) A. Celix et al. Phytopathology 86:1370, 1996. (2) J. Kao et al. Plant Dis. 84:101, 2000. (3) Y.-W. Kuo et al. Plant Dis. 91:330, 2007. (4) L. Rubio et al. J. Gen. Virol. 82:929, 2001.
Severe yellow leaf curl and plant stunting symptoms were observed in tomato plants from two home gardens in central Arizona (Phoenix area) and a tomato field in Sonora, Mexico during the fall of 2006. Disease symptoms were reminiscent of those reported in Florida during 1994 (4) and more recently in tomato fields in the Pacific Coast state of Sinaloa, Mexico found to be infected with the exotic Tomato yellow leaf curl virus (TYLCV) (2). Total DNA was extracted from two symptomatic tomato plants from Arizona and Sonora and used as a template in PCR. PCR products of the core region of the begomovirus coat protein gene (Cp) were cloned (n = 3) and the DNA sequence was determined. BLAST analysis of the 579 bases with sequences available in the NCBI GenBank database indicated the closest match was to an isolate of the monopartite begomovirus TYLCV from Israel, which was known to have been introduced into the Caribbean region, including Puerto Rico, the southeastern United States, and Mexico from 1990 to 1996 (1,4). The full-length TYLCV genome (approximately 2,800 bases) was amplified for a field isolate from each location by rolling circle amplification (RCA) using TempliPhi (Amersham Biosciences, Piscataway, NJ). RCA products were cloned into the plasmid vector pGEM7 (Promega, Madison, WI) that had been previously digested with SacI endonuclease. The complete TYLCV genome sequence was determined for six clones from each RCA product. Nucleotide analysis indicated that the complete TYLCV genome sequences from Sonora and Arizona, respectively, shared 97.6 and 97.7% nt identity. The comparative sequence analysis indicated that TYLCV-Sonora (TYLCV-Son) (GenBank Accession No. EF210555) was 99.1% nt identical to TYLCV reported recently from Culiacan, Mexico (GenBank Accession No. DQ631892). In contrast, TYLCV-AZ (GenBank Accession No. EF210554) shared 99.3% identity with an isolate from Texas, TYLCV-TX (GenBank Accession No. EF110890) (3). Interestingly, the TX and AZ TYLCV isolates contained a unique 29-nt deletion in the intergenic region (IR) between the TATA-box and the nonanucleotide, initiating at nt coordinate 2696. Except for the deletion in the IR region of the AZ and TX isolates, these viruses shared 97.6 to 99.1% nt identity to other TYLCV isolates reported in the Western Hemisphere. The genome sequence for TYLCV-Son shares high nt identity with TYLCV isolates identified in the Yucatan Peninsula and Pacific Coast of Mexico (2), the Caribbean region, and the southeastern United States, suggesting that a single TYLCV species was introduced and has spread throughout North America and the Caribbean (4). The absence of other TYLCV isolates in the Western Hemisphere with the novel 29-nt deletion noted for the TX and AZ isolates suggests that the latter two isolates originated from the same U.S. source. In Mexico, TYLCV was first introduced in the east coast and Yucatan region approximately in 1996. From there, this isolate has spread to the western part of the country (Sinaloa and Sonora) from 2004 to 2006 (2). Similarly, in the United States, TYLCV was introduced and spread in the eastern U.S. states beginning in 1994 (4), where it had been confined until it was discovered in Texas (3) and now Arizona during 2006. References: (1) J. Bird et al. Plant Dis. 85:1028, 2001. (2) J. K. Brown and A. M. Idris. Plant Dis. 90:1360, 2006. (3) T. Isakeit et al. Plant Dis. 91:466, 2007. (4) J. E. Polston et al. Plant Dis. 78:831, 1994.
R. Carrillo, J. Guerrero, M. Rodríguez, and C. Meriño-Gergichevich. 2015. Colonization of blueberry (Vaccinium corymbosum L.) plantlets by ericoid mycorrhizae under nursery conditions. Cien. Inv. Agr. 42(3): 365-374. The ericoid mycorrhiza is a symbiotic interaction that contributes to the improvement of the establishment and production of blueberries (Vaccinium corymbosum L.). The objectives of this paper were to assess the frequency (%) and intensity (%) of the colonization and growth of blueberry plantlets inoculated with ericoid mycorrhizae collected from three different edaphoclimatic conditions in the La Araucanía region of southern Chile under nursery conditions. Plantlets of three blueberry cultivars ("Brigitta", "Duke" and "Legacy") were grown under nursery conditions in sterile peat moss and a vermiculite substrate with fresh ericoid mycorrhizae propagules from Gaultheria pumila (collected in Villarrica National Park), Azalea sp., (from an urban garden in Temuco) or V. corymbosum cv. "Brigitta" (from an organic farm in Temuco). After six months, the development of hyphae characteristic of ericoid micorrhizal fungi was identified in root cells. The frequency and intensity of colonization was greater in the "Duke" cv. given the inoculum derived from V. corymbosum, followed by the "Brigitta" and "Legacy" cultivars treated with inoculum from the G. pumila inoculum. Colonization was lowest in those plants treated with the Azalea sp. inoculum. Contact between the inoculum sources and the fine roots of the micro-propagated blueberry plantlets under nursery conditions for six months was an effective method to promote mycorrhization. However, the development of mycorrhizae did not enhance the growth of the three blueberry cultivars during the evaluation period. The possibility of selecting ericoid inocula from site-specific conditions in southern Chile may eventually be used to support the micro-propagation of blueberry plantlets during acclimation and planting, assuming that mycorrhizal plants will improve conditions for establishment in the field.
Wheat (Triticum aestivum L.) is known for its ability to produce and release allelopathic compounds, which have potential for controlling weeds and diseases. Previous reports have shown the fungitoxic effects of allelochemicals present in wheat. Thus, these compounds can be exuded by roots to protect the tissues directly affected by Gaeumannomyces graminis var. tritici (Ggt) fungus that causes wheat take-all disease. The aim of this research was to evaluate in vitro the allelopathic effect of root exudate extracts from four Chilean wheat cultivars on Ggt growth. Root exudates were released from wheat seedlings to a sterile culture medium without nutrients. Afterward, the exudates in the culture medium were separated by liquidliquid extraction using ethyl acetate. Eight different concentrations were tested for each cultivar. The results showed that the degree to which the extracts strongly inhibit the phytopathogen growth is highly dependent on both the concentration and the cultivar. The root extract of the Domo cultivar was significantly active against Ggt (MIC=0.36 mg mL -1 ). IC 50 and MIC values obtained for Dollinco and Domo root exudate extracts showed toxicity to Ggt. These findings may be considered in future studies related to the use of allelopathic potential as a selection factor in order to reduce the yield losses caused by various take-all diseases, as an alternative to chemical controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.