We obtained the complete set of dynamic elastic stiffnesses for a suite of "shales" representative of unconventional reservoirs from simultaneously measured P-and S-wave speeds on single prisms specially machined from cores. Static linear compressibilities were concurrently obtained using strain gauges attached to the prism. Regardless of being from static or dynamic measurements, the pressure sensitivity varies strongly with the direction of measurement. Furthermore, the static and dynamic linear compressibilities measured parallel to the bedding are nearly the same whereas those perpendicular to the bedding can differ by as much as 100%. Compliant cracklike porosity, seen in scanning electron microscope images, controls the elastic properties measured perpendicular to the rock's bedding plane and results in highly nonlinear pressure sensitivity. In contrast, those properties measured parallel to the bedding are nearly insensitive to stress. This anisotropy to the pressure dependency of the strains and moduli further complicates the study of the overall anisotropy of such rocks. This horizontal stress insensitivity has implications for the use of advanced sonic logging techniques for stress direction indication. Finally, we tested the validity of the practice of estimating the fracture pressure gradient (i.e., horizontal stress) using our observed elastic engineering moduli and found that ignoring anisotropy would lead to underestimates of the minimum stress by as much as 90%. Although one could ostensibly obtain better values or the minimum stress if the rock anisotropy is included, we would hope that these results will instead discourage this method of estimating horizontal stress in favor of more reliable techniques.
A B S T R A C TAssuming Vertical Transverse Isotropy (VTI) symmetry the elastic anisotropy as a function of confining pressure of four carbonates and one evaporite from the Williston sedimentary basin in Saskatchewan, Canada is investigated using the ultrasonic pulse transmission method. Ultrasonic P-and S-wave velocities are obtained from cylindrical plugs cut from a main sample along horizontal, vertical and 45 • orientations with respect to the sample's presumed vertical axis of symmetry. The elastic constants were then calculated from the measured velocities and densities. Anisotropy was quantified by estimating Thomsen parameters (Thomsen 1986) from elastic constants. The results show that the samples are at the best weakly anisotropic. The presence of microcracks and pores as well as the heterogeneity of the samples play an important role in defining the P-and S-wave velocities. The weak anisotropy found in these samples suggests that 'intrinsic' properties of these rocks negligibly contribute to the anisotropy observed at the seismic scale.
In this work, wet bulk density ?WBD and compressional wave velocity VP core log data obtained along the AND-2A drillcore are plotted on density-velocity ternary mineral Rock Physics Templates (RPTs) built from a Self-Consistent (SC) micromechanics modelling with the purpose to deter- mine data trends that allow us to assist in identifying mineral lithotypes and lithological features throughout the 1138 m length of the drillcore. The elastic properties of the three dominant miner- als present in the drillcore (mixed clays, quartz, and calcite) and the pore-filling fluid (brine) were used as input data for the SC model. The interpreted lithology is then compared to that obtained from the analysis of the AND-2A drillcore ?WBD and VP log data using Gardner type density-velocity cross plots. Results from both the SC and Gardner methods are in good agreement with the main lithologies present in the AND-2A drillcore already reported in the scientific literature. Our findings also agree well when compared to the lithological description of six selected rock samples obtained at different depths on the AND-2A drillcore. These results suggest that the proposed SC approach could be helpful to assist to identify lithology in scientific drill holes where downhole elastic proper- ties may exist over intervals where portions of the drillcore were not recovered. Furthermore, even when elastic property data sets come from measurements on cores, the SC approach is likewise useful because, from visual analysis alone, lithology can sometimes be difficult to determine, and additional information from the analysis of the elastic properties may provide more insight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.