A novel Mach-Zehnder interferometer based on a fiber multimode interference structure combined with a long-period fiber grating (LPG) is proposed. The multimode interference is achieved through the use of a MMF section spliced between two single-mode fibers, with a length adjusted to couple a fraction of light into the cladding modes. A LPG placed after the MMF couples light back into the fiber core, completing the Mach-Zehnder interferometer. This novel configuration was demonstrated as a bending sensor.
This work describes a fiber optic sensing structure that is sensitive to curvature, and features a low temperature-and strain cross-sensitivity. It is based on multimode interference, and relies on a singlemode-step index multimode-singlemode fiber structure. It was observed that the transmitted optical power in such a layout is highly sensitive to the wavelength of operation, and to the length of the multimode fiber. The optical spectrum exhibits two dominant loss bands, at wavelengths that have similar responses both to temperature and strain, but different responses to curvature. Based on this result, an interrogation approach is proposed that permits substantial sensitivity to curvature (8.7 ± 0.1 nm m) and residual sensitivities to temperature and strain (0.3 ± 0.1 pm • C −1 and (−0.06 ± 0.01) × 10 −6 m m −1 , respectively). The beam-propagation method was employed for modeling the propagation of light along the optical fiber sensing device proposed.
This work explores the development of highly sensitive salinity sensors. The demonstrated sensors are based on optical fibres and consist on Fabry-Pérot optical cavities formed by optimized processes that include chemical etching and fusion splicing, on which microfluidic channels are milled by focused ion beam. Two configurations are presented and their performance compared, including a design that makes use of Vernier-effect for the simultaneous measurement of salinity and temperature with high sensitivity. The interrogation of the devices is carried out by spectral measurements using a broadband light source yielding sensitivities to salinity up to 82.61 nm/M, or 6830.0 nm/RIU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.