Background: The different fields of biotechnology can be classified by colors, as a "rainbow" methodology. In this sense, the red biotechnology, focused on the preservation of health, has been outstanding in helping to solve this challenge through the provision of technologies, including diagnostic kits, molecular diagnostics, vaccines, innovations in cancer research, therapeutic antibodies and stem cells. Objective: The main goal of this work is to highlight the different areas within the red Biotechnology. In this sense, we revised some patents regarding red biotechnology as examples to cover this subject. Methods: A literature search of patents was performed from the followings Patents Database: INPI, USPTO, Esp@cenet, WIPO and Google Patents. Results: Our analysis showed the following numbers from patents found: cancer research (8), diagnosis kit (9), vaccines (8), stem cells (9) and therapeutic antibodies (5), where the United States is the leader for most filled patents in Red Biotechnology. Conclusion: This mini-review has provided an update of some patents on Recent Patents in Red Biotechnology. As far as we know, this is the first mini-review report on Red Biotechnology based on patents.
Glioblastoma is the most prevalent and malignant brain tumor identified in adults. Surgical resection followed by radiotherapy and chemotherapy, mainly with temozolomide (TMZ), is the chosen treatment for this type of tumor. However, the average survival of patients is around 15 months. Novel approaches to glioblastoma treatment are greatly needed. Here, we aimed to investigate the anti-glioblastoma effect of the combination of matteucinol (Mat) (dihydroxyflavanone derived from Miconia chamissois Naudin) with the chemotherapeutic TMZ in vitro using tumor (U-251MG) and normal astrocyte (NHA) cell lines and in vivo using the chick embryo chorioallantoic membrane (CAM) assay. The combination was cytotoxic and selective for tumor cells (28 mg/mL Mat and 9.71 mg/mL TMZ). Additionally, the combination did not alter cell adhesion but caused morphological changes characteristic of apoptosis in vitro. Notably, the combination was also able to reduce tumor growth in the chick embryo model (CAM assay). The docking results showed that Mat was the best ligand to the cell death membrane receptor TNFR1 and to TNFR1/TMZ complex, suggesting that these two molecules may be working together increasing their potential. In conclusion, Mat-TMZ can be a good candidate for pharmacokinetic studies in view of clinical use for the treatment of glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.