In 2015, a Zika epidemic in Brazil began spreading throughout the Americas. Zika virus (ZIKV) entered Managua, Nicaragua, in January 2016 and caused an epidemic that peaked in July-September 2016. ZIKV seropositivity was estimated among participants of pediatric ( = 3,740) and household ( = 2,147) cohort studies, including an adult-only subset from the household cohort ( = 1,074), in Managua. Seropositivity was based on a highly sensitive and specific assay, the Zika NS1 blockade-of-binding ELISA, which can be used in dengue-endemic populations. Overall seropositivity for the pediatric (ages 2-14), household (ages 2-80), and adult (ages 15-80) cohorts was 36, 46, and 56%, respectively. Trend, risk factor, and contour mapping analyses demonstrated that ZIKV seroprevalence increased nonlinearly with age and that body surface area was statistically associated with increasing seroprevalence in children. ZIKV seropositivity was higher in females than in males across almost all ages, with adjusted prevalence ratios in children and adults of 1.11 (95% CI: 1.02-1.21) and 1.14 (95% CI: 1.01-1.28), respectively. No household-level risk factors were statistically significant in multivariate analyses. A spatial analysis revealed a 10-15% difference in the risk of ZIKV infections across our 3-km-wide study site, suggesting that ZIKV infection risk varies at small spatial scales. To our knowledge, this is the largest ZIKV seroprevalence study reported in the Americas, and the only one in Central America and in children to date. It reveals a high level of immunity against ZIKV in Managua as a result of the 2016 epidemic, making a second large Zika epidemic unlikely in the near future.
Background Paedeatric Zika remains an understudied topic. WHO and the Pan American Health Organization (PAHO) Zika case definitions have not been assessed in children. We aimed to characterise clinical profiles and evaluate the diagnostic performance of the WHO and PAHO case definitions in a large cohort of paediatric Zika cases. Methods From January, 2016 to February, 2017, encompassing the major 2016 Zika epidemic, participants in the Pediatric Dengue Cohort Study (PDCS) in Managua, Nicaragua, were encouraged to visit the study health centre at first indication of any illness. PDCS participants were aged 2-14 years, healthy at enrolment, and recruited before the initiation of the present study. Molecular and serological assays were used to test participants exhibiting any of four broad clinical profiles suspected of resulting from a symptomatic Zika virus infection. These clinical profiles were: fever and at least two of headache, retro-orbital pain, myalgia, arthralgia, rash, haemorrhagic manifestations, and leukopenia; fever and at least two of nausea or vomiting, rash, aches and pains, positive tourniquet test, leukopenia, and any dengue warning sign; undifferentiated fever without evident cause, with or without any other clinical finding; and afebrile rash with or without any other clinical finding. We characterised acute clinical findings (signs, symptoms, and complete blood counts) in both Zika cases and non-Zika cases. Findings We prospectively followed a cohort of about 3700 children, of which 1110 were deemed eligible for inclusion. Four participants with laboratory-confirmed Zika (three co-infections with dengue virus, one missing complete blood count data) and two participants who were non-Zika cases (missing complete blood count data) were excluded from analysis. We analysed 556 laboratory-confirmed Zika and 548 non-Zika cases. The WHO case definition captured 176 confirmed Zika cases, and the PAHO definition 109 confirmed Zika cases, who presented with the most clinical findings and a dengue-like clinical profile. The remaining two thirds of Zika cases, principally characterised by undifferentiated fever or afebrile rash, were missed. Among Zika cases, rash (n=440)-particularly generalised erythematous rash (n=334)-fever (n=333), leukopenia (n=217), and headache (n=203) were most common and peaked within 3 days of illness onset. The most common Zika presentation over the first week of illness was rash only (n=80). The sensitivity of Zika case definitions increased across paediatric age (from 11•3% to 56•1% for the WHO case definition and from 6•0% to 36•6% for the PAHO case definition), as the prevalence of most clinical findings (particularly arthralgia) increased with age, irrespective of previous dengue virus infection. Consequently, Zika manifested differently across paediatric age; older Zika cases presented with a dengue-like clinical profile while younger Zika cases presented with undifferentiated fever or afebrile rash. Interpretation We provide the most thorough description of paediatric Z...
Zika virus (ZIKV) infection recently caused major epidemics in the Americas and is linked to congenital birth defects and Guillain-Barré Syndrome. A pilot study of ZIKV infection in Nicaraguan households was conducted from August 31 to October 21, 2016, in Managua, Nicaragua. We enrolled 33 laboratory-confirmed Zika index cases and their household members (109 contacts) and followed them on days 3–4, 6–7, 9–10, and 21, collecting serum/plasma, urine, and saliva specimens along with clinical, demographic, and socio-economic status information. Collected samples were processed by rRT-PCR to determine viral load (VL) and duration of detectable ZIKV RNA in human bodily fluids. At enrollment, 11 (10%) contacts were ZIKV rRT-PCR-positive and 23 (21%) were positive by IgM antibodies; 3 incident cases were detected during the study period. Twenty of 33 (61%) index households had contacts with ZIKV infection, with an average of 1.9 (range 1–6) positive contacts per household, and in 60% of these households, ≥50% of the members were positive for ZIKV infection. Analysis of clinical information allowed us to estimate the symptomatic to asymptomatic (S:A) ratio of 14:23 (1:1.6) among the contacts, finding 62% of the infections to be asymptomatic. The maximum number of days during which ZIKV RNA was detected was 7 days post-symptom onset in saliva and serum/plasma and 22 days in urine. Overall, VL levels in serum/plasma, saliva, and urine specimens were comparable, with means of 5.6, 5.3 and 4.5 log10 copies/ml respectively, with serum attaining the highest VL peak at 8.1 log10 copies/ml. Detecting ZIKV RNA in saliva over a similar time-period and level as in serum/plasma indicates that saliva could potentially serve as a more accessible diagnostic sample. Finding the majority of infections to be asymptomatic emphasizes the importance of silent ZIKV transmission and helps inform public health interventions in the region and globally.
Background: Nicaragua experienced a large Zika epidemic in 2016, with up to 50% of the population in Managua infected. With the domesticated Aedes aegypti mosquito as its vector, it is widely assumed that Zika virus transmission occurs within the household and/or via human mobility. We investigated these assumptions by using viral genomes to trace Zika transmission spatially. Methods: We analysed serum samples from 119 paediatric Zika cases participating in the long-standing Paediatric Dengue Cohort Study in Managua, which was expanded to include Zika in 2015. An optimal spanning directed tree was constructed by minimizing the differences in viral sequence diversity composition between patient nodes, where low-frequency variants were used to increase the resolution of the inferred Zika outbreak dynamics. Findings: Out of the 18 houses where pairwise difference in sample collection dates among all the household members was within 30 days, we only found two where viruses from individuals within the same household were up to 10 th -most closely linked to each other genetically. We also identified a substantial number of transmission events involving long geographical distances (n=30), as well as potential super-spreading events in the estimated transmission tree. Interpretation: Our finding highlights that community transmission, often involving long geographical distances, played a much more important role in epidemic spread than within-household transmission.
Explosive epidemics of chikungunya, Zika, and COVID-19 have recently occurred worldwide, all of which featured large proportions of subclinical infections. Spatial studies of infectious disease epidemics typically use symptomatic infections (cases) to estimate incidence rates (cases/total population), often misinterpreting them as infection risks (infections/total population) or disease risks (cases/infected population). We examined these three measures in a pediatric cohort (N≈3,000) over two chikungunya epidemics and one Zika epidemic and in a household cohort (N=1,793) over one COVID-19 epidemic in Nicaragua. Across different analyses and all epidemics, case incidence rates considerably underestimated both risk-based measures. Spatial infection risk differed from spatial disease risk, and typical case-only approaches precluded a full understanding of the spatial seroprevalence patterns. For epidemics of pathogens that cause many subclinical infections, relying on case-only datasets and misinterpreting incidence rates, as is common, results in substantial bias, a general finding applicable to many pathogens of high human concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.