For dengue viruses (DENV1-4), a specific range of antibody titer has been shown to enhance viral replication in vitro and severe disease in animal models. Although suspected, such antibody-dependent enhancement (ADE) of severe disease has not been shown to occur in humans. Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, we show that risk of severe dengue disease is highest within a narrow range of pre-existing anti-DENV antibody titers. By contrast, we observe protection from all symptomatic dengue disease at high antibody titers. Thus, immune correlates of severe dengue must be evaluated separately from correlates of protection against symptomatic disease. These results have implications for studies of dengue pathogenesis and for vaccine development, because enhancement, not just lack of protection, is of concern.
Hepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/beta-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. beta-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy.
Mutations in cystic kidney disease genes represent a major genetic cause of end-stage renal disease. However, the molecular cascades controlling the expression of these genes are still poorly understood. Hepatocyte Nuclear Factor 1beta (HNF1beta) is a homeoprotein predominantly expressed in renal, pancreatic and hepatic epithelia. We report here that mice with renal-specific inactivation of HNF1beta develop polycystic kidney disease. We show that renal cyst formation is accompanied by a drastic defect in the transcriptional activation of Umod, Pkhd1 and Pkd2 genes, whose mutations are responsible for distinct cystic kidney syndromes. In vivo chromatin immunoprecipitation experiments demonstrated that HNF1beta binds to several DNA elements in murine Umod, Pkhd1, Pkd2 and Tg737/Polaris genomic sequences. Our results uncover a direct transcriptional hierarchy between HNF1beta and cystic disease genes. Interestingly, most of the identified HNF1beta target gene products colocalize to the primary cilium, a crucial organelle that plays an important role in controlling the proliferation of tubular cells. This may explain the increased proliferation of cystic cells in MODY5 patients carrying autosomal dominant mutations in HNF1beta.
Zika virus, chikungunya virus, and dengue virus result in similar clinical presentations, and coinfections may be relatively common. Accurate, multiplex diagnostics are necessary to detect and differentiate these arboviruses for patient care and epidemiologic surveillance.
The p38 mitogen-activated protein kinase (MAPK) pathway plays a critical role in skeletal muscle differentiation. However, the relative contribution of the four p38 MAPKs (p38a, p38b, p38c and p38d) to this process is unknown. Here we show that myoblasts lacking p38a, but not those lacking p38b or p38d, are unable to differentiate and form multinucleated myotubes, whereas p38c-deficient myoblasts exhibit an attenuated fusion capacity. The defective myogenesis in the absence of p38a is caused by delayed cell-cycle exit and continuous proliferation in differentiation-promoting conditions. Indeed, activation of JNK/cJun was enhanced in p38a-deficient myoblasts leading to increased cyclin D1 transcription, whereas inhibition of JNK activity rescued the proliferation phenotype. Thus, p38a controls myogenesis by antagonizing the activation of the JNK proliferation-promoting pathway, before its direct effect on muscle differentiation-specific gene transcription. More importantly, in agreement with the defective myogenesis of cultured p38a D/D myoblasts, neonatal muscle deficient in p38a shows cellular hyperproliferation and delayed maturation. This study provides novel evidence of a fundamental role of p38a in muscle formation in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.