Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.
Bilayer graphene is an attractive platform for studying new two-dimensional electron physics, because its flat energy bands are sensitive to out-of-plane electric fields and these bands magnify electron-electron interaction effects. Theory predicts a variety of interesting broken symmetry states when the electron density is at the carrier neutrality point, and some of these states are characterized by spontaneous mass gaps, which lead to insulating behaviour. These proposed gaps are analogous to the masses generated by broken symmetries in particle physics, and they give rise to large Berry phase effects accompanied by spontaneous quantum Hall effects. Although recent experiments have provided evidence for strong electronic correlations near the charge neutrality point, the presence of gaps remains controversial. Here, we report transport measurements in ultraclean double-gated bilayer graphene and use source-drain bias as a spectroscopic tool to resolve a gap of ∼2 meV at the charge neutrality point. The gap can be closed by a perpendicular electric field of strength ∼15 mV nm(-1), but it increases monotonically with magnetic field, with an apparent particle-hole asymmetry above the gap. These data represent the first spectroscopic mapping of the ground states in bilayer graphene in the presence of both electric and magnetic fields.
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.
Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries 1-5 . Reflection and transmission at these boundaries a ect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states 6-12 . Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer 13 . Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.Quantum confinement in graphene has previously been accomplished through lithographically patterned structures 14-17 , graphene edges 18 , and chemically synthesized graphene islands [19][20][21][22] . These systems, however, are either too contaminated for direct wavefunction visualization or use metallic substrates that prevent electrostatic gating. Electron confinement in graphene has also been induced through high magnetic fields 23 and supercritical impurities 24 , but these methods are unwieldy for many technological applications. An alternative approach for confining electrons in graphene relies on using electrostatic potentials. However, this is notoriously difficult because Klein tunnelling renders electric potentials transparent to massless Dirac fermions at non-oblique incidence 1-5 . Nevertheless, it has been theoretically predicted that a circular graphene p-n junction can localize Dirac electrons and form quasi-bound quantum dot states 6-11 . A recent tunnelling spectroscopy experiment 12 revealed signatures of electron confinement induced by the electrostatic potential created by a charged scanning tunnelling microscope (STM) tip. However, since the confining potential moves with the STM tip, this method allows neither spatial imaging of the resulting confined modes nor patterning control of the confinement potential.Here we employ a new patterning technique that allows the creation of stationary circular p-n junctions in a graphene layer on top of hexagonal boron nitride (hBN). Figure 1a illustrates how stationary circular graphene p-n junctions are created. We start with a graphene/hBN heterostructure resting on a SiO 2 /Si substrate. The doped Si substrate acts as a global backgate while the hBN layer provides a tunable local embedded gate after being treated by a voltage pulse from an STM tip 13 . To create this embedded gate the STM ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.