In this study, a new diffusion bioreactor was developed to cultivate hidden bacterial communities in their natural environment. The newly developed method was investigated to cultivate microbial communities from the forest soil, and the results were evaluated against traditional culture methods and compared to the results of a pyrosequencing-based molecular survey. The molecular analysis revealed that a diverse bacterial population was present in the soil sample. However, both the newly developed method and the traditional method recovered more than 400 isolates, which belonged to only four phyla:
Proteobacteria
,
Firmicutes
,
Actinobacteria
, and
Bacteroidetes
. Although these isolates were distributed over only four major phyla, the use of the newly developed technique resulted in the successful cultivation of 35 previously uncultured strains, whereas no such strains were successfully cultivated by the traditional method. Furthermore, the study also found that the recovery of uncultured bacteria and novel isolates was related to sampling season, incubation period, and cultivation media. The use of soil collected in summer, a prolonged incubation period, and low-substrate modified media increased the recovery of uncultured and novel isolates. Overall, the results indicate that the newly designed diffusion bioreactor can mimic the natural environment, which permits the cultivation of previously uncultured bacteria.
A plant growth-promoting rhizobacterium (PGPR) was isolated and identified as Gordonia sp. S2RP-17, which showed ACC deaminase and siderophore synthesizing activities. Its maximum specific growth rate was 0.54 ± 0.12 d(-1) at 5,000 mg L(-1) of total petroleum hydrocarbon (TPH), and its maximum diesel degradation rate was 2,434.0 ± 124.4 mg L(-1) d(-1) at 20,000 mg L(-1) of TPH. The growth of Zea mays was significantly promoted by the inoculation of Gordonia sp. S2RP-17 in the diesel-contaminated soil. Measured TPH removal efficiencies by various means were 13% by natural attenuation, 84.5% by planting Zea mays, and 95.8% by the combination of Zea mays and Gordonia sp. S2RP-17. The S2RP-17 cell counts were maintained at 1 × 10(6) CFU g-soil(-1) during the remediation period, although they slightly decreased from their initial numbers (2.94 × 10(7) CFU g-soil(-1)). These results indicate that rhizoremediation using both Zea mays and Gordonia sp. S2RP-17 is a promising strategy for enhancing remediation efficiency of diesel-contaminated soils.
Here, a new medium, named intensive soil extract medium (ISEM), based on new soil extract (NSE) using 80% methanol, was used to efficiently isolate previously uncultured bacteria and new taxonomic candidates, which accounted for 49% and 55% of the total isolates examined (n = 258), respectively. The new isolates were affiliated with seven phyla (Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Bacteroidetes). The result of chemical analysis showed that NSE included more diverse components of low-molecular-weight organic substances than two conventional soil extracts made using distilled water. Cultivation of previously uncultured bacteria is expected to extend knowledge through the discovery of new phenotypic, physiological, and functional properties and even roles of unknown genes.
IMPORTANCE Both metagenomics and single-cell sequencing can detect unknown genes from uncultured microbial strains in environments, and either method may find the significant potential metabolites and roles of these strains. However, such gene/genome-based techniques do not allow detailed investigations that are possible with cultures. To solve this problem, various approaches for cultivation of uncultured bacteria have been developed, but there are still difficulties in maintaining pure cultures by subculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.