People with transtibial amputation often experience skin breakdown due to the pressures and shear stresses that occur at the limb-socket interface. The purpose of this research was to create a transtibial finite element model (FEM) of a contemporary prosthesis that included complete socket geometry, two frictional interactions (limb-liner and liner-socket), and an elastomeric liner. Magnetic resonance imaging scans from three people with characteristic transtibial limb shapes (i.e., short-conical, long-conical, and cylindrical) were acquired and used to develop the models. Each model was evaluated with two loading profiles to identify locations of focused stresses during stance phase. The models identified five locations on the participants' residual limbs where peak stresses matched locations of mechanically induced skin issues they experienced in the 9 months prior to being scanned. The peak contact pressure across all simulations was 98 kPa and the maximum resultant shear stress was 50 kPa, showing reasonable agreement with interface stress measurements reported in the literature. Future research could take advantage of the developed FEM to assess the influence of changes in limb volume or liner material properties on interface stress distributions. Graphical abstract Residual limb finite element model. Left: model components. Right: interface pressures during stance phase.
The objective of this research was to investigate a strategy for designing and fabricating computer-manufactured socket inserts that were embedded with sensors for field monitoring of limb-socket interactions of prosthetic users. An instrumented insert was fabricated for a single trans-tibial prosthesis user that contained three sensor types (proximity sensor, force sensing resistor, and inductive sensor), and the system was evaluated through a sequence of laboratory clinical tests and two days of field use. During in-lab tests 3 proximity sensors accurately distinguish between don and doff states; 3 of 4 force sensing resistors measured gradual pressure increases as weight-bearing increased; and the inductive sensor indicated that as prosthetic socks were added the limb moved farther out of the socket and pistoning amplitude decreased. Multiple sensor types were necessary in analysis of field collected data to interpret how sock changes affected limb-socket interactions. Instrumented socket inserts, with sensors selected to match clinical questions of interest, have the potential to provide important insights to improve patient care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.