A nut-and-bolt microfluidic system was previously developed for a point-of-care (POC) human immunodeficiency virus (HIV) test and was able to acquire images of CD4 (cluster of differentiation 4) + T-lymphocytes in a sample drop of blood followed by image analysis. However, as the system was not fully integrated with a sample reaction module, the mixing of the sample with the antibody reagent was carried out manually. To achieve a rapid reaction with a reduced amount of costly reagent in a POC diagnostic system, an efficient sample mixing function must be implemented. Here, we propose a novel method to drastically accelerate the process of sample mixing and increase the reaction rate in the nut-and-bolt microfluidic system, where the sample is mixed with the reagent in a reaction chamber formed by connecting a nut with a bolt-like sample cartridge. The mixing is facilitated by rotating the sample cartridge bidirectionally using a DC motor, which agitates the sample in a chaotic manner. A microbead complex formed by the avidin–biotin interaction was used as a model reaction system to examine the feasibility of our mixing module. We found that the reaction time for the avidin–biotin binding by mixing was 7.5 times shorter than in the incubation method, achieving a reaction efficiency of over 95%. The performance of our mixing system was further demonstrated by measuring the concentration of CD4 cells labeled with a fluorescent antibody in the blood sample. The antigen–antibody reaction mixing was faster by a factor of 20, reaching a reaction efficiency comparable to the conventional incubation method.
The CD4 (cluster of differentiation 4) counting method is used to measure the number of CD4+ T-lymphocytes per microliter of blood and to evaluate the timing of the initiation of antiretroviral therapy as well as the effectiveness of treatment in patients with human immunodeficiency virus. We developed a three-dimensional helical minichannel-based sample cartridge in which a thread-like microgroove formed in the cylindrical surface and configured a particle-positioning and imaging system equipped with a single DC (direct current) motor that can be controlled by a smartphone application. Confinement and enrichment of CD4 cells within a sharp focal depth along the helical minichannel is accomplished by spinning the cylindrical sample cartridge at high speed before acquiring cell images and thus CD4+ cells with weak fluorescence intensity can be detected even in a channel much deeper than existing two-dimensional flat chambers without an autofocusing module. By detecting more cells in a larger sample volume, the accuracy of the CD4 cell count is improved by a factor of 5.8 with a channel of 500 μm depth and the precision is enhanced by a factor of 1.5 with a coefficient of variation of 2.6%.
Background Needle-free jet injection (NFJI) systems enable a controlled and targeted delivery of drugs into skin tissue. However, a scarce understanding of their underlying mechanisms has been a major deterrent to the development of an efficient system. Primarily, the lack of a suitable visualization technique that could capture the dynamics of the injected fluid–tissue interaction with a microsecond range temporal resolution has emerged as a main limitation. A conventional needle-free injection system may inject the fluids within a few milliseconds and may need a temporal resolution in the microsecond range for obtaining the required images. However, the presently available imaging techniques for skin tissue visualization fail to achieve these required spatial and temporal resolutions. Previous studies on injected fluid–tissue interaction dynamics were conducted using in vitro media with a stiffness similar to that of skin tissue. However, these media are poor substitutes for real skin tissue, and the need for an imaging technique having ex vivo or in vivo imaging capability has been echoed in the previous reports. Methods A near-infrared imaging technique that utilizes the optical absorption and fluorescence emission of indocyanine green dye, coupled with a tissue clearing technique, was developed for visualizing a NFJI in an ex vivo porcine skin tissue. Results The optimal imaging conditions obtained by considering the optical properties of the developed system and mechanical properties of the cleared ex vivo samples are presented. Crucial information on the dynamic interaction of the injected liquid jet with the ex vivo skin tissue layers and their interfaces could be obtained. Conclusions The reported technique can be instrumental for understanding the injection mechanism and for the development of an efficient transdermal NFJI system as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.