Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV) fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.
Post-antibiotic effect (PAE) is the continued suppression of bacterial growth following a limited exposure to an antimicrobial agent. The presence of PAE needs consequential consideration in designing antibiotic dosage regimens. To understand the behavior of bacteria, PAE provides information on how long antibiotics are applied to the bacteria. Conventional methods of measuring PAE depend on population detection and have limitations for understanding the individual behavior of bacteria. To observe the PAE, we utilized an imaging technique with the use of microscopy. Here, we discuss the microscopic image analysis system we used to study the PAE at a single-colony level. The size and number of colonies of bacteria were measured prior to and following antibiotic removal. We could count a single colony, see the development of the settlement prior to and following exposure of antibiotics and track the colony by microscopy according to the incubation time and the image processed by our own image processing program. The PAE of antibiotics was quantified by comparing bacteria size and number based on their exposure time. In our study, we discovered that the longer exposure of antibiotics causes the bacteria to be suppressed—even after washing the antibiotics from the solution. This finding suggests that microscopic imaging detection provides a new method for understanding PAE. In addition, the behavior of the cell in response to drugs and chemicals and their removal can be examined with the use of single colony analysis.
In this study, we developed the prototype of an optical imaging-based point-of-care (POC) device for monitoring human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) progression that can detect CD4+ T-lymphocytes in human blood. The proposed portable cell-counting system, Helios CD4 Analyzer (Helios), can acquire sample images and analyze the cells automatically using a simple fluorescence imaging module and sample cartridge with a three-dimensional (3D) helical minichannel. The helical minichannel formed on the cylindrical surface enables the sample cartridge to hold a cell suspension present in a fixed sample volume for absolute counting of the cells. With a given total channel length, the helical minichannel-based sample cartridge is smaller than the conventional sample cartridge with a planar microchannel. The implemented nut and bolt mechanism allows the scanning of a relatively large volume of the sample along the helical minichannel by just rotating the cylindrical chamber coupled with a single DC motor rather than using a two-axis motorized translation stage, which considerably simplifies the associated electromechanical parts. It has distinct advantages over the existing devices because of its small size and simple scanning mechanism. We optimized various imaging parameters to enhance the fluorescence detection efficiency of the prototype. Performance evaluations using human blood samples demonstrated good agreement for low CD4 count between the Helios and the PIMATM, one of the most widely used POC CD4+ analyzers.
It is technically difficult to acquire large-field images under the complexity and cost restrictions of a diagnostic and instant field research purpose. The goal of the introduced large-field imaging system is to achieve a tolerable resolution for detecting microscale particles or objects in the entire image field without the field-curvature effect, while maintaining a cost-effective procedure and simple design. To use a single commercial lens for imaging a large field, the design attempts to fabricate a curved microfluidic chamber. This imaging technique improves the field curvature and distortion at an acceptable level of particle detection. This study examines Paramecium caudatum microswimmers to track their motion dynamics in different viscous media with imaging techniques. In addition, the study found that the average speed for P. caudatum was 60 µm/s, with a standard deviation of ±12 µm/s from microscopic imaging of the original medium of the sample, which leads to a variation of 20% from the average measurement. In contrast, from large-field imaging, the average speeds of P. caudatum were 63 µm/s and 68 µm/s in the flat and curved chambers, respectively, with the same medium viscosity. Furthermore, the standard deviations that were observed were ±7 µm/s and ±4 µm/s and the variations from the average speed were calculated as 11% and 5.8% for the flat and curved chambers, respectively. The proposed methodology can be applied to measure the locomotion of the microswimmer at small scales with high precision.
The CD4 (cluster of differentiation 4) counting method is used to measure the number of CD4+ T-lymphocytes per microliter of blood and to evaluate the timing of the initiation of antiretroviral therapy as well as the effectiveness of treatment in patients with human immunodeficiency virus. We developed a three-dimensional helical minichannel-based sample cartridge in which a thread-like microgroove formed in the cylindrical surface and configured a particle-positioning and imaging system equipped with a single DC (direct current) motor that can be controlled by a smartphone application. Confinement and enrichment of CD4 cells within a sharp focal depth along the helical minichannel is accomplished by spinning the cylindrical sample cartridge at high speed before acquiring cell images and thus CD4+ cells with weak fluorescence intensity can be detected even in a channel much deeper than existing two-dimensional flat chambers without an autofocusing module. By detecting more cells in a larger sample volume, the accuracy of the CD4 cell count is improved by a factor of 5.8 with a channel of 500 μm depth and the precision is enhanced by a factor of 1.5 with a coefficient of variation of 2.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.