Highlights d Brain-region-and cell-type-resolved lipidomic profiling d Definition of differences in lipid profiles of CNS cell types d Integration of lipid with protein expression profiles predicts lipid pathwaysd Aging alters brain lipid profiles with regional differences
Neurodegenerative diseases are a growing burden, and there is an urgent need for better biomarkers for diagnosis, prognosis, and treatment efficacy. Structural and functional brain alterations are reflected in the protein composition of cerebrospinal fluid (CSF). Alzheimer's disease (AD) patients have higher CSF levels of tau, but we lack knowledge of systems-wide changes of CSF protein levels that accompany AD. Here, we present a highly reproducible mass spectrometry (MS)based proteomics workflow for the in-depth analysis of CSF from minimal sample amounts. From three independent studies (197 individuals), we characterize differences in proteins by AD status (> 1,000 proteins, CV < 20%). Proteins with previous links to neurodegeneration such as tau, SOD1, and PARK7 differed most strongly by AD status, providing strong positive controls for our approach. CSF proteome changes in Alzheimer's disease prove to be widespread and often correlated with tau concentrations. Our unbiased screen also reveals a consistent glycolytic signature across our cohorts and a recent study. Machine learning suggests clinical utility of this proteomic signature.
Plasma and serum are rich sources of information regarding an individual's health state, and protein tests inform medical decision making. Despite major investments, few new biomarkers have reached the clinic. Mass spectrometry (MS)‐based proteomics now allows highly specific and quantitative readout of the plasma proteome. Here, we employ Plasma Proteome Profiling to define quality marker panels to assess plasma samples and the likelihood that suggested biomarkers are instead artifacts related to sample handling and processing. We acquire deep reference proteomes of erythrocytes, platelets, plasma, and whole blood of 20 individuals (> 6,000 proteins), and compare serum and plasma proteomes. Based on spike‐in experiments, we determine sample quality‐associated proteins, many of which have been reported as biomarker candidates as revealed by a comprehensive literature survey. We provide sample preparation guidelines and an online resource ( http://www.plasmaproteomeprofiling.org) to assess overall sample‐related bias in clinical studies and to prevent costly miss‐assignment of biomarker candidates.
Proteomics and neuropathological validation show that aberrant poly-GR/PR proteins in C9orf72 ALS/FTD bind STAU2 and ribosomes and inhibit translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.