We propose a novel way of embedding functional smart contract languages into the Coq proof assistant using meta-programming techniques. Our framework allows for developing the meta-theory of smart contract languages using the deep embedding and provides a convenient way for reasoning about concrete contracts using the shallow embedding. The proposed approach allows making a connection between the two embeddings in the form of a soundness theorem. As an instance of our approach, we develop an embedding of the Oak smart contract language in Coq and verify several important properties of a crowdfunding contract. The developed techniques are applicable to all functional smart contract languages.
We implement extraction of Coq programs to functional languages based on MetaCoq's certified erasure. As part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wrt. a conventional call-by-value operational semantics of functional languages. We apply this to two functional smart contract languages, Liquidity and Midlang, and to the functional language Elm. Our development is done in the context of the ConCert framework that enables smart contract verification. We contribute a verified boardroom voting smart contract featuring maximum voter privacy such that each vote is kept private except under collusion of all other parties. We also integrate property-based testing into ConCert using QuickChick and our development is the first to support testing properties of interacting smart contracts. We test several complex contracts such as a DAO-like contract, an escrow contract, an implementation of a Decentralized Finance (DeFi) contract which includes a custom token standard (Tezos FA2), and more. In total, this gives us a way to write dependent programs in Coq, test them semi-automatically, verify, and then extract to functional smart contract languages, while retaining a small trusted computing base of only MetaCoq and the pretty-printers into these languages.
We implement extraction of Coq programs to functional languages based on MetaCoq’s certified erasure. We extend the MetaCoq erasure output language with typing information and use it as an intermediate representation, which we call ${\lambda^T_\square}$ . We complement the extraction functionality with a full pipeline that includes several standard transformations (e.g. eta-expansion and inlining) implemented in a proof-generating manner along with a verified optimisation pass removing unused arguments. We prove the pass correct wrt. a conventional call-by-value operational semantics of functional languages. From the optimised ${\lambda^T_\square}$ representation, we obtain code in two functional smart contract languages, Liquidity and CameLIGO, the functional language Elm, and a subset of the multi-paradigm language for systems programming Rust. Rust is currently gaining popularity as a language for smart contracts, and we demonstrate how our extraction can be used to extract smart contract code for the Concordium network. The development is done in the context of the ConCert framework that enables smart contract verification. We contribute with two verified real-world smart contracts (boardroom voting and escrow), which we use, among other examples, to exemplify the applicability of the pipeline. In addition, we develop a verified web application and extract it to fully functional Elm code. In total, this gives us a way to write dependently typed programs in Coq, verify, and then extract them to several target languages while retaining a small trusted computing base of only MetaCoq and the pretty-printers into these languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.