The rescue operations’ environment can impair firefighters’ performance and increase the risk of injuries, e.g., burns and hyperthermia. The bulk and carried weight of heavy protection contributes to lower physical performance, higher metabolic load and internal body heat production. For recommending optimal protection for the tasks and incident scenarios, knowledge of clothing thermal properties is needed. However, detailed data on firefighter protective clothing systems are not available. The aim of the study was to provide scientific background and a dataset that would allow for validation of thermo-physiological models for task-specific conditions of rescue work. Thermal insulation of 37 single items and their variations and 25 realistic protective clothing ensembles were measured on a thermal manikin. Twelve (12) ensembles that evenly covered the whole insulation range were selected for evaporative resistance testing. The equations for summing up individual item’s insulation to ensemble insulation and calculating clothing area factor were derived from the dataset. The database of a firefighter clothing system was created. In addition, the local and regional thermal properties of the clothing ensembles were provided for use in future validation of advanced thermo-physiological models for rescue worker exposure predictions and for designing decision aid tools.
Notifications that related 1 st degree burns to reflective striping and impermeable clothing elements did reach the investigators, while the mechanisms behind this phenomenon are still unclear. Material tests for thermal and evaporative resistance, and for heat transmission under dry and wet conditions at low radiation levels were done to evaluate the performance of protective clothing with and without printed logos or reflective striping. The results under the specified conditions showed reduction of heat loss capacity under impermeable elements from dry to wet conditions. Reflective surfaces, even when more impermeable, showed still lower heat transmission through the textile package than materials without striping under tested moisture and radiation combinations. It can be expected that the reported 1 st degree burns were related to clothing design and tightness/fit rather than to reflective striping. However, due to the fine balance between clothing thermal and evaporative resistance, outer material emissivity, moisture quantity and location in clothing and applied radiation level, a different setup could lead to different results.
In the Asia–Pacific region (APR), extreme precipitation is one of the most critical climate stressors, affecting 60% of the population and adding pressure to governance, economic, environmental, and public health challenges. In this study, we analyzed extreme precipitation spatiotemporal trends in APR using 11 different indices and revealed the dominant factors governing precipitation amount by attributing its variability to precipitation frequency and intensity. We further investigated how these extreme precipitation indices are influenced by El Niño-Southern Oscillation (ENSO) at a seasonal scale. The analysis covered 465 ERA5 (the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts) study locations over eight countries and regions during 1990–2019. Results revealed a general decrease indicated by the extreme precipitation indices (e.g., the annual total amount of wet-day precipitation, average intensity of wet-day precipitation), particularly in central-eastern China, Bangladesh, eastern India, Peninsular Malaysia and Indonesia. We observed that the seasonal variability of the amount of wet-day precipitation in most locations in China and India are dominated by precipitation intensity in June–August (JJA), and by precipitation frequency in December–February (DJF). Locations in Malaysia and Indonesia are mostly dominated by precipitation intensity in March–May (MAM) and DJF. During ENSO positive phase, significant negative anomalies in seasonal precipitation indices (amount of wet-day precipitation, number of wet days and intensity of wet-day precipitation) were observed in Indonesia, while opposite results were observed for ENSO negative phase. These findings revealing patterns and drivers for extreme precipitation in APR may inform climate change adaptation and disaster risk reduction strategies in the study region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.