SUMMARY Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. In vivo, remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable.
ZusammenfassungSeit Dezember 2019 verbreitet sich das neuartige Coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome – Corona Virus-2) rasch im Sinne einer weltweiten Pandemie. Dies stellt Kliniker und Krankenhäuser vor große Herausforderungen und belastet die Gesundheitssysteme vieler Länder in einem nie dagewesenen Ausmaß. Die Mehrheit der Patienten mit Coronavirus Disease 2019 (COVID-19) zeigt lediglich milde Symptome wie Husten und Fieber. Allerdings benötigen etwa 8 % eine stationäre Behandlung. Der frühzeitigen Klärung, ob eine stationäre und ggfs. intensivmedizinische Behandlung medizinisch sinnvoll und vom Patienten gewollt ist, kommt in der Pandemie eine besondere Bedeutung zu. Die akute hypoxämische respiratorische Insuffizienz mit Dyspnoe und hoher Atemfrequenz (> 30/min) führt i. d. R. zur Aufnahme auf die Intensivstation. Oft finden sich dann bereits bilaterale pulmonale Infiltrate/Konsolidierungen oder auch Lungenembolien in der Bildgebung. Im weiteren Verlauf entwickeln einige dieser Patienten ein akutes Lungenversagen (Acute Respiratory Distress Syndrome; ARDS). Eine Sterblichkeitsreduktion einer verfügbaren medikamentösen Therapie bei schwerer COVID-19-Erkrankung ist bisher lediglich für Dexamethason in randomisiert, kontrollierten Studien nachgewiesen. Das Hauptziel der supportiven Therapie besteht in der Sicherstellung einer ausreichenden Oxygenierung. Die invasive Beatmung und wiederholte Bauchlagerung sind dabei wichtige Elemente in der Behandlung von schwer hypoxämischen COVID-19-Patienten. Die strikte Einhaltung der Basishygiene, einschließlich der Händehygiene, sowie das korrekte Tragen von adäquater persönlicher Schutzausrüstung sind im Umgang mit den Patienten unabdingbar. Medizinisch notwendige Handlungen am Patienten, die zur Aerosolbildung führen könnten, sollten mit äußerster Sorgfalt und Vorbereitung durchgeführt werden.
Innate immunity triggers responsible for viral control or hyperinflammation in COVID‐19 are largely unknown. Here we show that the SARS‐CoV‐2 spike protein (S‐protein) primes inflammasome formation and release of mature interleukin‐1β (IL‐1β) in macrophages derived from COVID‐19 patients but not in macrophages from healthy SARS‐CoV‐2 naïve individuals. Furthermore, longitudinal analyses reveal robust S‐protein‐driven inflammasome activation in macrophages isolated from convalescent COVID‐19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID‐19. Importantly, we show that S‐protein‐driven IL‐1β secretion from patient‐derived macrophages requires non‐specific monocyte pre‐activation in vivo to trigger NLRP3‐inflammasome signaling. Our findings reveal that SARS‐CoV‐2 infection causes profound and long‐lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS‐CoV‐2 S‐protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.
Background We aimed to assess the efficacy and safety of two neutralising monoclonal antibody therapies (sotrovimab [Vir Biotechnology and GlaxoSmithKline] and BRII-196 plus BRII-198 [Brii Biosciences]) for adults admitted to hospital for COVID-19 (hereafter referred to as hospitalised) with COVID-19. Methods In this multinational, double-blind, randomised, placebo-controlled, clinical trial (Therapeutics for Inpatients with COVID-19 [TICO]), adults (aged ≥18 years) hospitalised with COVID-19 at 43 hospitals in the USA, Denmark, Switzerland, and Poland were recruited. Patients were eligible if they had laboratory-confirmed SARS-CoV-2 infection and COVID-19 symptoms for up to 12 days. Using a web-based application, participants were randomly assigned (2:1:2:1), stratified by trial site pharmacy, to sotrovimab 500 mg, matching placebo for sotrovimab, BRII-196 1000 mg plus BRII-198 1000 mg, or matching placebo for BRII-196 plus BRII-198, in addition to standard of care. Each study product was administered as a single dose given intravenously over 60 min. The concurrent placebo groups were pooled for analyses. The primary outcome was time to sustained clinical recovery, defined as discharge from the hospital to home and remaining at home for 14 consecutive days, up to day 90 after randomisation. Interim futility analyses were based on two seven-category ordinal outcome scales on day 5 that measured pulmonary status and extrapulmonary complications of COVID-19. The safety outcome was a composite of death, serious adverse events, incident organ failure, and serious coinfection up to day 90 after randomisation. Efficacy and safety outcomes were assessed in the modified intention-to-treat population, defined as all patients randomly assigned to treatment who started the study infusion. This study is registered with ClinicalTrials.gov , NCT04501978 . Findings Between Dec 16, 2020, and March 1, 2021, 546 patients were enrolled and randomly assigned to sotrovimab (n=184), BRII-196 plus BRII-198 (n=183), or placebo (n=179), of whom 536 received part or all of their assigned study drug (sotrovimab n=182, BRII-196 plus BRII-198 n=176, or placebo n=178; median age of 60 years [IQR 50–72], 228 [43%] patients were female and 308 [57%] were male). At this point, enrolment was halted on the basis of the interim futility analysis. At day 5, neither the sotrovimab group nor the BRII-196 plus BRII-198 group had significantly higher odds of more favourable outcomes than the placebo group on either the pulmonary scale (adjusted odds ratio sotrovimab 1·07 [95% CI 0·74–1·56]; BRII-196 plus BRII-198 0·98 [95% CI 0·67–1·43]) or the pulmonary-plus complications scale (sotrovimab 1·08 [0·74–1·58]; BRII-196 plus BRII-198 1·00 [0·68–1·46]). By day 90, sustained clinical recovery was seen in 151 (85%) patients in the placebo group compared with 160 (88%) in the sotrovimab group (adjusted rate ratio 1·12 [95% CI 0·91–...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.