Technical biases are introduced in omics data sets during data generation and interfere with the ability to study biological mechanisms. Several normalization approaches have been proposed to minimize the effects of such biases, but fluctuations in the electrospray current during liquid chromatography–mass spectrometry gradients cause local and sample-specific bias not considered by most approaches. Here we introduce a software named NormalyzerDE that includes a generic retention time (RT)-segmented approach compatible with a wide range of global normalization approaches to reduce the effects of time-resolved bias. The software offers straightforward access to multiple normalization methods, allows for data set evaluation and normalization quality assessment as well as subsequent or independent differential expression analysis using the empirical Bayes Limma approach. When evaluated on two spike-in data sets the RT-segmented approaches outperformed conventional approaches by detecting more peptides (8–36%) without loss of precision. Furthermore, differential expression analysis using the Limma approach consistently increased recall (2–35%) compared to analysis of variance. The combination of RT-normalization and Limma was in one case able to distinguish 108% (2597 vs 1249) more spike-in peptides compared to traditional approaches. NormalyzerDE provides widely usable tools for performing normalization and evaluating the outcome and makes calculation of subsequent differential expression statistics straightforward. The program is available as a web server at .
Patient-derived xenografts (PDX) and the Avatar, a single PDX mirroring an individual patient, are emerging tools in preclinical cancer research. However, the consequences of intratumor heterogeneity for PDX modeling of biomarkers, target identification, and treatment decisions remain underexplored. In this study, we undertook serial passaging and comprehensive molecular analysis of neuroblastoma orthotopic PDXs, which revealed strong intrinsic genetic, transcriptional, and phenotypic stability for more than 2 years. The PDXs showed preserved neuroblastoma-associated gene signatures that correlated with poor clinical outcome in a large cohort of patients with neuroblastoma. Furthermore, we captured spatial intratumor heterogeneity using ten PDXs from a single high-risk patient tumor. We observed diverse growth rates, transcriptional, proteomic, and phosphoproteomic profiles. PDX-derived transcriptional profiles were associated with diverse clinical characteristics in patients with high-risk neuroblastoma. These data suggest that high-risk neuroblastoma contains elements of both temporal stability and spatial intratumor heterogeneity, the latter of which complicates clinical translation of personalized PDX-Avatar studies into preclinical cancer research. These findings underpin the complexity of PDX modeling as a means to advance translational applications against neuroblastoma. .
Potato cyst nematodes (PCN) are important pests in crop production, especially since they persist in the soil and may affect further potato production for many years. Little is known about putative resistance and susceptibility targets as well as the general signaling in potato after interactions with PCN. Here we characterize a new potato breeding clone, SW-1015, found to harbor resistance to Globodera rostochiensis pathotype Ro1/4, the main PCN pathotype present in Sweden. SW-1015 contains the H1 resistance gene. We then describe susceptible and resistant reactions of potato infested by G. rostochiensis Ro1/4 in a global potato RNA-seq analysis. Only the resistant clone reacted to PCN infection quickly (8 hpi), and the reaction included upregulation of a TSRF1 transcription factor. 48 h after PCN infection, massive RNA reprograming was evident in both resistant and susceptible clones. In the resistant interaction, several genes were up-regulated including germins and a cysteine protease, as well as a laccase. In contrast, the susceptible interaction involved up-regulation of genes for auxin transport and homeobox binding. Enriched GO terms for kinase activity, calmodulin, and Ca 2+ ion binding in susceptible potato might reflect the initiation of nematode feeding structures. A TIR receptor like protein member was induced in the susceptible interaction only, making this a putative susceptibility factor. The RNA data is deposited at ArrayExpress with the number E-MTAB-5215.
BackgroundThe changing climate and the desire to use renewable oil sources necessitate the development of new oilseed crops. Field cress (Lepidium campestre) is a species in the Brassicaceae family that has been targeted for domestication not only as an oilseed crop that produces seeds with a desirable industrial oil quality but also as a cover/catch crop that provides valuable ecosystem services. Lepidium is closely related to Arabidopsis and display significant proportions of syntenic regions in their genomes. Arabidopsis genes are among the most characterized genes in the plant kingdom and, hence, comparative genomics of Lepidium-Arabidopsis would facilitate the identification of Lepidium candidate genes regulating various desirable traits.ResultsHomologues of 30 genes known to regulate vernalization, flowering time, pod shattering, oil content and quality in Arabidopsis were identified and partially characterized in Lepidium. Alignments of sequences representing field cress and two of its closely related perennial relatives: L. heterophyllum and L. hirtum revealed 243 polymorphic sites across the partial sequences of the 30 genes, of which 95 were within the predicted coding regions and 40 led to a change in amino acids of the target proteins. Within field cress, 34 polymorphic sites including nine non-synonymous substitutions were identified. The phylogenetic analysis of the data revealed that field cress is more closely related to L. heterophyllum than to L. hirtum.ConclusionsThere is significant variation within and among Lepidium species within partial sequences of the 30 genes known to regulate traits targeted in the present study. The variation within these genes are potentially useful to speed-up the process of domesticating field cress as future oil crop. The phylogenetic relationship between the Lepidium species revealed in this study does not only shed some light on Lepidium genome evolution but also provides important information to develop efficient schemes for interspecific hybridization between different Lepidium species as part of the domestication efforts.Electronic supplementary materialThe online version of this article (10.1186/s12863-018-0624-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.