Nonwovens made of recycled carbon fibers (rCF) and thermoplastic (TP) fibers have excellent economic and ecological potential. In contrast to new fibers, recycled carbon fibers are significantly cheaper, and the CO2 footprint is mostly compensated by energy savings in the first product life cycle. The next step for this promising material is its industrial serial use. Therefore, we analyzed the process chain from fiber to composite material. Initially, the rCF length at different positions during the carding process was measured. Thereafter, we evaluated the influence of the TP fibers on the processing, fiber shortening, and mechanical properties. Finally, several nonwovens with different TP fibers and fiber volume contents between 15 vol% and 30 vol% were produced, consolidated by hot-pressing, and tested by four-point bending to determine the mechanical values. The fiber length reduction ranged from 20.6% to 28.4%. TP fibers cushioned the rCF against mechanical stress but held rCF fragments back due to their crimp. The resulting bending strength varied from 301 to 405 MPa, and the stiffness ranged from 16.3 to 30.1 GPa. Design recommendations for reduced fiber shortening are derived as well as material mixtures that offer better homogeneity and higher mechanical properties.
This study summarizes different characterisation methods performed with new carbon fibres(vCF - virgin carbon fibres) for structural applications as carbon fiber reinforced plastic (CFRP)as well as fiber samples which have been treated under different conditions. These parameters consistof combinations of temperature (400-600 C) and dwell time (30 - 60 min) in an oxidising atmospherein order to provide a fundamental basis for the definition of possible recycling processes to regain thehigh value raw material, i.e. the carbon fibre, after the use-phase of the initial CFRP-structure. The investigationsthat were performed on vCF and secondary fibres (rCF - recycled CF) show in very goodagreement, that below 500 C almost no degradation of the fibre is visible, between 500 and 600 C arapid decrease in different physical and mechanical properties occurs and above 600 C a recovery ofthe fiber in terms of a secondary use in high performance structural context seems not to be feasible.The investigations that were performed consist of optical microscopy for the measurement of the fibrediameter, the deformation of the cross section and a statistical analysis. The second method appliedwas the characterization of the monofilament density, alongside to the breaking force and elongation,leading to the calculation of tensile strength and Youngs Modulus and further statistical analysis ofWeibull Modulus and its decrease over temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.