Nonwovens made of recycled carbon fibers (rCF) and thermoplastic (TP) fibers have excellent economic and ecological potential. In contrast to new fibers, recycled carbon fibers are significantly cheaper, and the CO2 footprint is mostly compensated by energy savings in the first product life cycle. The next step for this promising material is its industrial serial use. Therefore, we analyzed the process chain from fiber to composite material. Initially, the rCF length at different positions during the carding process was measured. Thereafter, we evaluated the influence of the TP fibers on the processing, fiber shortening, and mechanical properties. Finally, several nonwovens with different TP fibers and fiber volume contents between 15 vol% and 30 vol% were produced, consolidated by hot-pressing, and tested by four-point bending to determine the mechanical values. The fiber length reduction ranged from 20.6% to 28.4%. TP fibers cushioned the rCF against mechanical stress but held rCF fragments back due to their crimp. The resulting bending strength varied from 301 to 405 MPa, and the stiffness ranged from 16.3 to 30.1 GPa. Design recommendations for reduced fiber shortening are derived as well as material mixtures that offer better homogeneity and higher mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.