ABSTRACT:Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term "3D building models" can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.
Aerial hyperspectral and multispectral satellite data are the two most commonly used datasets to identify natural and semi-natural vegetation. However, there is no documented analysis based on data from several areas concerning the difference in the classification accuracy of non-forest Natura 2000 habitat with the use of aerial hyperspectral and satellite multispectral data. Also, there is no recommendation, on which habitat can be classified with sufficient accuracy using free multispectral images. This study aimed to analyse the difference in classification accuracy of Natura 2000 habitats representing: meadows, grasslands, heaths and mires between data with different spectral resolutions and the results utility for nature conservation compared to conventional maps. The analysis was conducted in five study areas in Poland. The classification was performed on multispectral Sentinel-2 (S2) and hyperspectral HySpex (HS) images using the Random Forest algorithm. Based on the results, it can be stated that the use of HS data resulted in higher classification accuracy, on average 0.14, than using S2 images, regardless of the area of the habitat. However, the difference in accuracy was not constant, varying by area and habitat characterisation. Greater differences in accuracy were observed for areas where habitats were characterised by high α-diversity or β-diversity. The HS and S2 data make it possible to create maps that provide a great deal of new knowledge about the distribution of Natura 2000 habitats, which is necessary for the management of protected areas. The obtained results indicate that by using S2 images it is possible to identify, at a satisfactory level, alluvial meadows and grassland. For heaths and mires, using HS data improved the results, but it is also possible to acquire general distribution of these classes, whereas HS images are obligatory for mapping salt, Molinia and lowland hay meadows.
The succession process of trees and shrubs is considered as one of the threats to non-forest Natura 2000 habitats. Poland, as a member of the European Union, is obliged to monitor these habitats and preserve them in the best possible condition. If threats are identified, it is necessary to take action—as part of the so-called active protection—that will ensure the preservation of habitats in a non-deteriorated condition. At present, monitoring of Natura 2000 habitats is carried out in expert terms, i.e., the habitat conservation status is determined during field visits. This process is time- and cost-intensive, and it is subject to the subjectivism of the person performing the assessment. As a result of the research, a methodology for the identification and monitoring of the succession process in non-forest Natura 2000 habitats was developed, in which multi-sensor remote sensing data are used—airborne laser scanner (ALS) and hyperspectral (HS) data. The methodology also includes steps required to analyse the dynamics of the succession process in the past, which is done using archival photogrammetric data (aerial photographs and ALS data). The algorithms implemented within the methodology include structure from motion and dense image matching for processing the archival images, segmentation and Voronoi tessellation for delineating the spatial extent of succession, machine learning random forest classifier, recursive feature elimination and t-distributed stochastic neighbour embedding algorithms for succession species differentiation, as well as landscape metrics used for threat level analysis. The proposed methodology has been automated and enables a rapid assessment of the level of threat for a whole given area, as well as in relation to individual Natura 2000 habitats. The prepared methodology was successfully tested on seven research areas located in Poland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.