A spectral method based on surface plasmon resonance (SPR) in air is used to measure the dielectric function of a thin metal film. The method utilizes the spectral dependence of the ratio of the reflectances of p- and s-polarized waves measured in the Kretschmann configuration at different angles of incidence. By processing these dependences in the vicinity of a dip, or equivalently near the resonance wavelength, and using the dispersion characteristics of a metal film according to a proposed physical model, the real and imaginary parts of the dielectric function of the metal can be determined. The corresponding dielectric function of the metal is obtained by a least squares method for such a thickness minimizing the difference between the measured and theoretical dependence of the resonance wavelength on the the angle of incidence. The feasibility of the method is demonstrated in measuring the dielectric function of a gold film of an SPR structure comprising an SF10 glass prism and a gold coated SF10 slide with an adhesion film of chromium. The dielectric function according to the Drude–Lorentz model with two additional Lorentzian terms was determined in a wavelength range from 534 to 908 nm, and the results show that the gold film is composed of homogenous and rough layers with thicknesses 42.8 nm and 2.0 nm, respectively. This method is particularly useful in measuring the thickness and dielectric function of a thin metal film of SPR structures, directly in the Kretschmann configuration.
In this paper, we present a new type of guided-mode resonance (GMR)-based sensor that utilizes a planar waveguide structure (PWS). We employed a PWS with an asymmetric three-layer waveguide structure consisting of substrate/Au/photoresist. The ellipsometric characterization of the structure layers, the simulated reflectance spectra, and optical field distributions under GMR conditions showed that multiple waveguide modes can be excited in the PWS. These modes can be used for refractive index sensing, and the theoretical analysis of the designed PWS showed a sensitivity to the refractive index up to 6600 nm per refractive index unit (RIU) and a figure of merit (FOM) up to 224 RIU−1. In response to these promising theoretical results, the PWS was used to measure the relative humidity (RH) of moist air with a sensitivity up to 0.141 nm/%RH and a FOM reaching 3.7 × 10−3%RH−1. The results demonstrate that this highly-sensitive and hysteresis-free sensor based on GMR has the potential to be used in a wide range of applications.
In this paper, simple and highly sensitive plasmonic structures are analyzed theoretically and experimentally. A structure comprising a glass substrate with a gold layer, two adhesion layers of chromium, and a silicon dioxide overlayer is employed in liquid analyte sensing. The sensing properties of two structures with distinct protective layer thicknesses are derived based on a wavelength interrogation method. Spectral reflectance responses in the Kretschmann configuration with a coupling BK7 prism are presented, using the thicknesses of individual layers obtained by a method of spectral ellipsometry. In the measured spectral reflectance, a pronounced dip is resolved, which is strongly red-shifted as the refractive index (RI) of the analyte increases. Consequently, a sensitivity of 15,785 nm per RI unit (RIU) and a figure of merit (FOM) of 37.9 RIU−1 are reached for the silicon dioxide overlayer thickness of 147.5 nm. These results are in agreement with the theoretical ones, confirming that both the sensitivity and FOM can be enhanced using a thicker silicon dioxide overlayer. The designed structures prove to be advantageous as their durable design ensures the repeatability of measurement and extends their employment compared to regularly used structures for aqueous analyte sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.