We demonstrate an efficient 102-MW peak power, 103-W average power, Kerr-lens mode-locked thin-disk laser (TDL) oscillator generating 52-fs pulses at 17.1-MHz repetition rate. The TDL is based on an Yb:YAG disk and operates in the strongly self-phase-modulation (SPM) broadened regime. In this regime, the spectral bandwidth of the oscillating pulse exceeds the available gain bandwidth by generating additional frequency components via SPM in the Kerr medium inside the laser cavity. At an optical-to-optical efficiency of 26%, our oscillator delivers a more than six times higher average power compared to any 50-fs-class laser oscillator. Compared to previous 100-W-class high-power laser oscillators, we reach this performance in a more than two times shorter pulse duration at a comparable optical-to-optical efficiency. Our TDL delivers the highest peak power of any ultrafast laser oscillator. The short pulse duration combined with high average power and peak power makes the presented TDL oscillator an attractive source for high field science and nonlinear optics.
We demonstrate that Kerr lens modelocking is well-suited for operating an ultrafast thin-disk laser with intra-oscillator high harmonic generation (HHG) in the 100-fs pulse duration regime. Exploiting nearly the full emission bandwidth of the gain material Yb:YAG, we generate 105-fs pulses with an intracavity peak power of 365 MW and an intracavity average power of 470 W. We drive HHG in argon with a peak intensity of ∼7⋅1013 W/cm2 at a repetition rate of 11 MHz. Extreme-ultraviolet (XUV) light is generated up to the 31st harmonic order (H31) at 37 eV, with an average power of ∼0.4 µW in H25 at 30 eV. This work presents a considerable increase in performance of XUV sources based on intra-oscillator HHG and confirms that this approach is a promising technology for simple and portable XUV sources at MHz repetition rates.
Morphing refers to the smooth transition from a specific shape into another one, in which the initial and final shapes can be significantly different. A typical illustration is to turn a cube into a sphere by continuous change of shape curvatures. Here, we demonstrate a process of laser-induced morphing, driven by surface tension and thermally-controlled viscosity. As a proof-of-concept, we turn 3D glass structures fabricated by a femtosecond laser into other shapes by locally heating up the structure with a feedback-controlled CO2 laser. We further show that this laser morphing process can be accurately modelled and predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.